Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrpel Structured version   Visualization version   GIF version

Theorem bj-ablssgrpel 37256
Description: Abelian groups are groups (elemental version). This is a shorter proof of ablgrp 19799. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrpel (𝐴 ∈ Abel → 𝐴 ∈ Grp)

Proof of Theorem bj-ablssgrpel
StepHypRef Expression
1 bj-ablssgrp 37255 . 2 Abel ⊆ Grp
21sseli 3978 1 (𝐴 ∈ Abel → 𝐴 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Grpcgrp 18947  Abelcabl 19795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-in 3957  df-ss 3967  df-abl 19797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator