Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrpel Structured version   Visualization version   GIF version

Theorem bj-ablssgrpel 35427
Description: Abelian groups are groups (elemental version). This is a shorter proof of ablgrp 19372. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrpel (𝐴 ∈ Abel → 𝐴 ∈ Grp)

Proof of Theorem bj-ablssgrpel
StepHypRef Expression
1 bj-ablssgrp 35426 . 2 Abel ⊆ Grp
21sseli 3921 1 (𝐴 ∈ Abel → 𝐴 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Grpcgrp 18558  Abelcabl 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-abl 19370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator