Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc11v Structured version   Visualization version   GIF version

Theorem bj-axc11v 35773
Description: Version of axc11 2429 with a disjoint variable condition, which does not require ax-13 2371 nor ax-10 2137. Remark: the following theorems (hbae 2430, nfae 2432, hbnae 2431, nfnae 2433, hbnaes 2434) would need to be totally unbundled to be proved without ax-13 2371, hence would be simple consequences of ax-5 1913 or nfv 1917. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc11v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-axc11v
StepHypRef Expression
1 axc11rv 2256 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
21bj-aecomsv 35772 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator