Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc11v Structured version   Visualization version   GIF version

Theorem bj-axc11v 35687
Description: Version of axc11 2430 with a disjoint variable condition, which does not require ax-13 2372 nor ax-10 2138. Remark: the following theorems (hbae 2431, nfae 2433, hbnae 2432, nfnae 2434, hbnaes 2435) would need to be totally unbundled to be proved without ax-13 2372, hence would be simple consequences of ax-5 1914 or nfv 1918. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc11v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-axc11v
StepHypRef Expression
1 axc11rv 2257 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
21bj-aecomsv 35686 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator