Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc11v Structured version   Visualization version   GIF version

Theorem bj-axc11v 36775
Description: Version of axc11 2438 with a disjoint variable condition, which does not require ax-13 2380 nor ax-10 2141. Remark: the following theorems (hbae 2439, nfae 2441, hbnae 2440, nfnae 2442, hbnaes 2443) would need to be totally unbundled to be proved without ax-13 2380, hence would be simple consequences of ax-5 1909 or nfv 1913. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc11v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-axc11v
StepHypRef Expression
1 axc11rv 2266 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
21bj-aecomsv 36774 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator