Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-drnf2v Structured version   Visualization version   GIF version

Theorem bj-drnf2v 34992
Description: Version of drnf2 2444 with a disjoint variable condition, which does not require ax-10 2137, ax-11 2154, ax-12 2171, ax-13 2372. Instance of nfbidv 1925. Note that the version of axc15 2422 with a disjoint variable condition is actually ax12v2 2173 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-drnf2v.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-drnf2v (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem bj-drnf2v
StepHypRef Expression
1 bj-drnf2v.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21nfbidv 1925 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator