| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae 2429 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnae 2432 axc16nfALT 2435 dral2 2436 drex2 2440 drnf2 2442 sbequ5 2463 2ax6elem 2468 sbco3 2511 axbnd 2700 axrepnd 10488 axunnd 10490 axpowndlem3 10493 axpownd 10495 axregndlem1 10496 axregnd 10498 axacndlem1 10501 axacndlem2 10502 axacndlem3 10503 axacndlem4 10504 axacndlem5 10505 axacnd 10506 |
| Copyright terms: Public domain | W3C validator |