MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfae Structured version   Visualization version   GIF version

Theorem nfae 2431
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfae 𝑧𝑥 𝑥 = 𝑦

Proof of Theorem nfae
StepHypRef Expression
1 hbae 2429 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21nf5i 2140 1 𝑧𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-11 2152  ax-12 2169  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfnae  2432  axc16nfALT  2435  dral2  2436  drex2  2440  drnf2  2442  sbequ5  2463  2ax6elem  2468  sbco3  2515  axbnd  2706  axrepnd  10396  axunnd  10398  axpowndlem3  10401  axpownd  10403  axregndlem1  10404  axregnd  10406  axacndlem1  10409  axacndlem2  10410  axacndlem3  10411  axacndlem4  10412  axacndlem5  10413  axacnd  10414
  Copyright terms: Public domain W3C validator