| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae 2436 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnae 2439 axc16nfALT 2442 dral2 2443 drex2 2447 drnf2 2449 sbequ5 2470 2ax6elem 2475 sbco3 2518 axbnd 2707 axrepnd 10613 axunnd 10615 axpowndlem3 10618 axpownd 10620 axregndlem1 10621 axregnd 10623 axacndlem1 10626 axacndlem2 10627 axacndlem3 10628 axacndlem4 10629 axacndlem5 10630 axacnd 10631 |
| Copyright terms: Public domain | W3C validator |