![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2366. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae 2425 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
2 | 1 | nf5i 2134 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1531 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 |
This theorem is referenced by: nfnae 2428 axc16nfALT 2431 dral2 2432 drex2 2436 drnf2 2438 sbequ5 2459 2ax6elem 2464 sbco3 2507 axbnd 2698 axrepnd 10625 axunnd 10627 axpowndlem3 10630 axpownd 10632 axregndlem1 10633 axregnd 10635 axacndlem1 10638 axacndlem2 10639 axacndlem3 10640 axacndlem4 10641 axacndlem5 10642 axacnd 10643 |
Copyright terms: Public domain | W3C validator |