Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae 2429 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
2 | 1 | nf5i 2140 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 |
This theorem is referenced by: nfnae 2432 axc16nfALT 2435 dral2 2436 drex2 2440 drnf2 2442 sbequ5 2463 2ax6elem 2468 sbco3 2515 axbnd 2706 axrepnd 10396 axunnd 10398 axpowndlem3 10401 axpownd 10403 axregndlem1 10404 axregnd 10406 axacndlem1 10409 axacndlem2 10410 axacndlem3 10411 axacndlem4 10412 axacndlem5 10413 axacnd 10414 |
Copyright terms: Public domain | W3C validator |