| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae 2430 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnae 2433 axc16nfALT 2436 dral2 2437 drex2 2441 drnf2 2443 sbequ5 2464 2ax6elem 2469 sbco3 2512 axbnd 2701 axrepnd 10554 axunnd 10556 axpowndlem3 10559 axpownd 10561 axregndlem1 10562 axregnd 10564 axacndlem1 10567 axacndlem2 10568 axacndlem3 10569 axacndlem4 10570 axacndlem5 10571 axacnd 10572 |
| Copyright terms: Public domain | W3C validator |