| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae 2429 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnae 2432 axc16nfALT 2435 dral2 2436 drex2 2440 drnf2 2442 sbequ5 2463 2ax6elem 2468 sbco3 2511 axbnd 2700 axrepnd 10547 axunnd 10549 axpowndlem3 10552 axpownd 10554 axregndlem1 10555 axregnd 10557 axacndlem1 10560 axacndlem2 10561 axacndlem3 10562 axacndlem4 10563 axacndlem5 10564 axacnd 10565 |
| Copyright terms: Public domain | W3C validator |