| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae 2431 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | 1 | nf5i 2149 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfnae 2434 axc16nfALT 2437 dral2 2438 drex2 2442 drnf2 2444 sbequ5 2465 2ax6elem 2470 sbco3 2513 axbnd 2702 axrepnd 10485 axunnd 10487 axpowndlem3 10490 axpownd 10492 axregndlem1 10493 axregnd 10495 axacndlem1 10498 axacndlem2 10499 axacndlem3 10500 axacndlem4 10501 axacndlem5 10502 axacnd 10503 |
| Copyright terms: Public domain | W3C validator |