MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfae Structured version   Visualization version   GIF version

Theorem nfae 2438
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfae 𝑧𝑥 𝑥 = 𝑦

Proof of Theorem nfae
StepHypRef Expression
1 hbae 2436 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21nf5i 2147 1 𝑧𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfnae  2439  axc16nfALT  2442  dral2  2443  drex2  2447  drnf2  2449  sbequ5  2470  2ax6elem  2475  sbco3  2518  axbnd  2707  axrepnd  10613  axunnd  10615  axpowndlem3  10618  axpownd  10620  axregndlem1  10621  axregnd  10623  axacndlem1  10626  axacndlem2  10627  axacndlem3  10628  axacndlem4  10629  axacndlem5  10630  axacnd  10631
  Copyright terms: Public domain W3C validator