MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfae Structured version   Visualization version   GIF version

Theorem nfae 2433
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfae 𝑧𝑥 𝑥 = 𝑦

Proof of Theorem nfae
StepHypRef Expression
1 hbae 2431 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21nf5i 2143 1 𝑧𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wal 1540  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-11 2155  ax-12 2172  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfnae  2434  axc16nfALT  2437  dral2  2438  drex2  2442  drnf2  2444  sbequ5  2465  2ax6elem  2470  sbco3  2513  axbnd  2703  axrepnd  10589  axunnd  10591  axpowndlem3  10594  axpownd  10596  axregndlem1  10597  axregnd  10599  axacndlem1  10602  axacndlem2  10603  axacndlem3  10604  axacndlem4  10605  axacndlem5  10606  axacnd  10607
  Copyright terms: Public domain W3C validator