Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfae | ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae 2432 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
2 | 1 | nf5i 2145 | 1 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1539 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-11 2157 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 |
This theorem is referenced by: nfnae 2435 axc16nfALT 2438 dral2 2439 drex2 2443 drnf2 2445 sbequ5 2466 2ax6elem 2471 sbco3 2518 axbnd 2709 axrepnd 10334 axunnd 10336 axpowndlem3 10339 axpownd 10341 axregndlem1 10342 axregnd 10344 axacndlem1 10347 axacndlem2 10348 axacndlem3 10349 axacndlem4 10350 axacndlem5 10351 axacnd 10352 |
Copyright terms: Public domain | W3C validator |