![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-clex | Structured version Visualization version GIF version |
Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-clex.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
bj-clex | ⊢ (𝐴 ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3486 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
2 | dfcleq 2724 | . . . 4 ⊢ (𝑦 = 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
3 | bj-clex.1 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
4 | 3 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝑦 ↔ 𝜑)) |
5 | 4 | albii 1820 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
6 | 2, 5 | bitri 275 | . . 3 ⊢ (𝑦 = 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
7 | 6 | exbii 1849 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
8 | 1, 7 | bitri 275 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 |
This theorem is referenced by: bj-axsn 36217 bj-axbun 36221 bj-axadj 36226 |
Copyright terms: Public domain | W3C validator |