| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-clex | Structured version Visualization version GIF version | ||
| Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-clex.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| bj-clex | ⊢ (𝐴 ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3494 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 2 | dfcleq 2730 | . . . 4 ⊢ (𝑦 = 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | bj-clex.1 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 4 | 3 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝑦 ↔ 𝜑)) |
| 5 | 4 | albii 1819 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| 6 | 2, 5 | bitri 275 | . . 3 ⊢ (𝑦 = 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| 7 | 6 | exbii 1848 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 |
| This theorem is referenced by: bj-axsn 37033 bj-axbun 37037 bj-axadj 37042 |
| Copyright terms: Public domain | W3C validator |