Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-clex Structured version   Visualization version   GIF version

Theorem bj-clex 36216
Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-clex.1 (𝑥𝐴𝜑)
Assertion
Ref Expression
bj-clex (𝐴 ∈ V ↔ ∃𝑦𝑥(𝑥𝑦𝜑))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-clex
StepHypRef Expression
1 isset 3486 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 dfcleq 2724 . . . 4 (𝑦 = 𝐴 ↔ ∀𝑥(𝑥𝑦𝑥𝐴))
3 bj-clex.1 . . . . . 6 (𝑥𝐴𝜑)
43bibi2i 337 . . . . 5 ((𝑥𝑦𝑥𝐴) ↔ (𝑥𝑦𝜑))
54albii 1820 . . . 4 (∀𝑥(𝑥𝑦𝑥𝐴) ↔ ∀𝑥(𝑥𝑦𝜑))
62, 5bitri 275 . . 3 (𝑦 = 𝐴 ↔ ∀𝑥(𝑥𝑦𝜑))
76exbii 1849 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑦𝑥(𝑥𝑦𝜑))
81, 7bitri 275 1 (𝐴 ∈ V ↔ ∃𝑦𝑥(𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1538   = wceq 1540  wex 1780  wcel 2105  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475
This theorem is referenced by:  bj-axsn  36217  bj-axbun  36221  bj-axadj  36226
  Copyright terms: Public domain W3C validator