Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-clex Structured version   Visualization version   GIF version

Theorem bj-clex 34716
Description: Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-clex (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-clex
StepHypRef Expression
1 imaexg 7631 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 bj-snsetex 34715 . 2 ((𝐴𝐵) ∈ V → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
31, 2syl 17 1 (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {cab 2735  Vcvv 3409  {csn 4525  cima 5531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-xp 5534  df-cnv 5536  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541
This theorem is referenced by:  bj-projex  34747
  Copyright terms: Public domain W3C validator