Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-clex Structured version   Visualization version   GIF version

Theorem bj-clex 35081
Description: Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-clex (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-clex
StepHypRef Expression
1 imaexg 7736 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
2 bj-snsetex 35080 . 2 ((𝐴𝐵) ∈ V → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
31, 2syl 17 1 (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {cab 2715  Vcvv 3422  {csn 4558  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  bj-projex  35112
  Copyright terms: Public domain W3C validator