| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbval2vv | Structured version Visualization version GIF version | ||
| Description: Version of cbval2vv 2416 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cbval2vv.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bj-cbval2vv | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfv 1913 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 3 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 4 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 5 | bj-cbval2vv.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbval2v 2343 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |