Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexdv | Structured version Visualization version GIF version |
Description: Version of cbvexd 2408 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cbvaldv.1 | ⊢ Ⅎ𝑦𝜑 |
bj-cbvaldv.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
bj-cbvaldv.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
bj-cbvexdv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cbvaldv.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | bj-cbvaldv.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
3 | 2 | nfnd 1862 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 ¬ 𝜓) |
4 | bj-cbvaldv.3 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
5 | notbi 318 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒)) | |
6 | 4, 5 | syl6ib 250 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (¬ 𝜓 ↔ ¬ 𝜒))) |
7 | 1, 3, 6 | bj-cbvaldv 34908 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒)) |
8 | 7 | notbid 317 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 ¬ 𝜓 ↔ ¬ ∀𝑦 ¬ 𝜒)) |
9 | df-ex 1784 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
10 | df-ex 1784 | . 2 ⊢ (∃𝑦𝜒 ↔ ¬ ∀𝑦 ¬ 𝜒) | |
11 | 8, 9, 10 | 3bitr4g 313 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: bj-cbvexdvav 34913 |
Copyright terms: Public domain | W3C validator |