Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbvex2vv Structured version   Visualization version   GIF version

Theorem bj-cbvex2vv 34984
Description: Version of cbvex2vv 2414 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-cbval2vv.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
bj-cbvex2vv (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑦,𝜓   𝑥,𝑧,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem bj-cbvex2vv
StepHypRef Expression
1 nfv 1917 . 2 𝑧𝜑
2 nfv 1917 . 2 𝑤𝜑
3 nfv 1917 . 2 𝑥𝜓
4 nfv 1917 . 2 𝑦𝜓
5 bj-cbval2vv.1 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
61, 2, 3, 4, 5cbvex2v 2342 1 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator