![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvex2v | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) Remove dependency on ax-10 2185. (Revised by Wolf Lammen, 18-Jul-2021.) |
Ref | Expression |
---|---|
cbval2v.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvex2v | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbval2v.1 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvexdva 2419 | . 2 ⊢ (𝑥 = 𝑧 → (∃𝑦𝜑 ↔ ∃𝑤𝜓)) |
3 | 2 | cbvexv 2413 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-11 2200 ax-12 2213 ax-13 2377 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-nf 1880 |
This theorem is referenced by: cbvex4v 2422 funop1 42138 uspgrsprf1 42554 |
Copyright terms: Public domain | W3C validator |