| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvex2v | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2 2417 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 14-Sep-2003.) (Revised by BJ, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| cbval2v.1 | ⊢ Ⅎ𝑧𝜑 |
| cbval2v.2 | ⊢ Ⅎ𝑤𝜑 |
| cbval2v.3 | ⊢ Ⅎ𝑥𝜓 |
| cbval2v.4 | ⊢ Ⅎ𝑦𝜓 |
| cbval2v.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex2v | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2v.1 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑧 ¬ 𝜑 |
| 3 | cbval2v.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑤 ¬ 𝜑 |
| 5 | cbval2v.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbval2v.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 8 | 7 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜓 |
| 9 | cbval2v.5 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 10 | 9 | notbid 318 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 11 | 2, 4, 6, 8, 10 | cbval2v 2345 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑧∀𝑤 ¬ 𝜓) |
| 12 | 2nexaln 1830 | . . 3 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 13 | 2nexaln 1830 | . . 3 ⊢ (¬ ∃𝑧∃𝑤𝜓 ↔ ∀𝑧∀𝑤 ¬ 𝜓) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . 2 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ¬ ∃𝑧∃𝑤𝜓) |
| 15 | 14 | con4bii 321 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvopab 5215 cbvoprab12 7522 bj-cbvex2vv 36803 or2expropbilem2 47045 ichnreuop 47459 |
| Copyright terms: Public domain | W3C validator |