| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mndsssmgrpel | Structured version Visualization version GIF version | ||
| Description: Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-mndsssmgrpel | ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-mndsssmgrp 37249 | . 2 ⊢ Mnd ⊆ Smgrp | |
| 2 | 1 | sseli 3978 | 1 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Smgrpcsgrp 18727 Mndcmnd 18743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-ss 3967 df-mnd 18744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |