Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mndsssmgrpel Structured version   Visualization version   GIF version

Theorem bj-mndsssmgrpel 35086
Description: Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-mndsssmgrpel (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)

Proof of Theorem bj-mndsssmgrpel
StepHypRef Expression
1 bj-mndsssmgrp 35085 . 2 Mnd ⊆ Smgrp
21sseli 3874 1 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  Smgrpcsgrp 18019  Mndcmnd 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3401  df-in 3851  df-ss 3861  df-mnd 18031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator