Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mndsssmgrpel Structured version   Visualization version   GIF version

Theorem bj-mndsssmgrpel 37229
Description: Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-mndsssmgrpel (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)

Proof of Theorem bj-mndsssmgrpel
StepHypRef Expression
1 bj-mndsssmgrp 37228 . 2 Mnd ⊆ Smgrp
21sseli 4004 1 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Smgrpcsgrp 18750  Mndcmnd 18766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-mnd 18767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator