Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mndsssmgrpel | Structured version Visualization version GIF version |
Description: Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-mndsssmgrpel | ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-mndsssmgrp 35085 | . 2 ⊢ Mnd ⊆ Smgrp | |
2 | 1 | sseli 3874 | 1 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 Smgrpcsgrp 18019 Mndcmnd 18030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-rab 3063 df-v 3401 df-in 3851 df-ss 3861 df-mnd 18031 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |