Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equs45fv | Structured version Visualization version GIF version |
Description: Version of equs45f 2459 with a disjoint variable condition, which does not require ax-13 2372. Note that the version of equs5 2460 with a disjoint variable condition is actually sbalex 2238 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-equs45fv.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
bj-equs45fv | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equs45fv.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nf5ri 2191 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | anim2i 616 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑)) |
4 | 3 | eximi 1838 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)) |
5 | equs5av 2274 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
7 | equs4v 2004 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
8 | 6, 7 | impbii 208 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |