MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnf2 Structured version   Visualization version   GIF version

Theorem drnf2 2444
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 5-May-2018.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use nfbidv 1926 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drnf2 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))

Proof of Theorem drnf2
StepHypRef Expression
1 nfae 2433 . 2 𝑧𝑥 𝑥 = 𝑦
2 dral1.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2nfbidf 2220 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by:  nfsb4t  2503  drnfc2  2927  drnfc2OLD  2928
  Copyright terms: Public domain W3C validator