Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elissetALT Structured version   Visualization version   GIF version

Theorem bj-elissetALT 36407
Description: Alternate proof of elisset 2807. This is essentially the same proof as seen by inlining bj-denotes 36402 and bj-denoteslem 36401. Use elissetv 2806 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-elissetALT (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-elissetALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elissetv 2806 . 2 (𝐴𝑉 → ∃𝑦 𝑦 = 𝐴)
2 bj-denotes 36402 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)
31, 2sylib 217 1 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wex 1773  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-clel 2802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator