Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-issetiv Structured version   Visualization version   GIF version

Theorem bj-issetiv 34964
Description: Version of bj-isseti 34965 with a disjoint variable condition on 𝑥, 𝑉. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general than isseti 3438 as long as elex 3441 is not available (and the non-dependence of bj-issetiv 34964 on special properties of the universal class V is obvious). Prefer its use over bj-isseti 34965 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-issetiv.1 𝐴𝑉
Assertion
Ref Expression
bj-issetiv 𝑥 𝑥 = 𝐴
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem bj-issetiv
StepHypRef Expression
1 bj-issetiv.1 . 2 𝐴𝑉
2 elissetv 2820 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
31, 2ax-mp 5 1 𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wex 1787  wcel 2112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-clel 2818
This theorem is referenced by:  bj-rexcom4bv  34969  bj-vtoclf  35002
  Copyright terms: Public domain W3C validator