Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elissetv | Structured version Visualization version GIF version |
Description: An element of a class exists. Version of elisset 2820 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2716. Prefer its use over elisset 2820 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.) |
Ref | Expression |
---|---|
elissetv | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2817 | . 2 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉)) | |
2 | exsimpl 1871 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉) → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 |
This theorem is referenced by: elisset 2820 isseti 3447 bj-elissetALT 35061 bj-issetiv 35062 bj-ceqsaltv 35072 bj-ceqsalgv 35076 bj-spcimdvv 35081 bj-vtoclg1fv 35104 bj-vtoclg 35105 bj-ru 35133 |
Copyright terms: Public domain | W3C validator |