MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elissetv Structured version   Visualization version   GIF version

Theorem elissetv 2812
Description: An element of a class exists. Version of elisset 2813 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2708. Prefer its use over elisset 2813 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.)
Assertion
Ref Expression
elissetv (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem elissetv
StepHypRef Expression
1 dfclel 2809 . 2 (𝐴𝑉 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝑉))
2 exsimpl 1869 . 2 (∃𝑥(𝑥 = 𝐴𝑥𝑉) → ∃𝑥 𝑥 = 𝐴)
31, 2sylbi 216 1 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-clel 2808
This theorem is referenced by:  elisset  2813  clelab  2877  isseti  3488  elex22  3495  bj-elissetALT  36059  bj-issetiv  36060  bj-ceqsaltv  36070  bj-ceqsalgv  36074  bj-spcimdvv  36079  bj-vtoclg1fv  36102  bj-vtoclg  36103  bj-ru  36128  bj-unexg  36222
  Copyright terms: Public domain W3C validator