Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elissetv | Structured version Visualization version GIF version |
Description: An element of a class exists. Version of elisset 2822 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2718. Prefer its use over elisset 2822 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.) |
Ref | Expression |
---|---|
elissetv | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2819 | . 2 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉)) | |
2 | exsimpl 1875 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉) → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-clel 2818 |
This theorem is referenced by: elisset 2822 isseti 3446 bj-elissetALT 35049 bj-issetiv 35050 bj-ceqsaltv 35060 bj-ceqsalgv 35064 bj-spcimdvv 35069 bj-vtoclg1fv 35092 bj-vtoclg 35093 bj-ru 35121 |
Copyright terms: Public domain | W3C validator |