MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elissetv Structured version   Visualization version   GIF version

Theorem elissetv 2821
Description: An element of a class exists. Version of elisset 2822 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2718. Prefer its use over elisset 2822 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.)
Assertion
Ref Expression
elissetv (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem elissetv
StepHypRef Expression
1 dfclel 2819 . 2 (𝐴𝑉 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝑉))
2 exsimpl 1875 . 2 (∃𝑥(𝑥 = 𝐴𝑥𝑉) → ∃𝑥 𝑥 = 𝐴)
31, 2sylbi 216 1 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wex 1786  wcel 2110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-clel 2818
This theorem is referenced by:  elisset  2822  isseti  3446  bj-elissetALT  35049  bj-issetiv  35050  bj-ceqsaltv  35060  bj-ceqsalgv  35064  bj-spcimdvv  35069  bj-vtoclg1fv  35092  bj-vtoclg  35093  bj-ru  35121
  Copyright terms: Public domain W3C validator