MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elissetv Structured version   Visualization version   GIF version

Theorem elissetv 2825
Description: An element of a class exists. Version of elisset 2826 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2718. Prefer its use over elisset 2826 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.)
Assertion
Ref Expression
elissetv (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem elissetv
StepHypRef Expression
1 dfclel 2820 . 2 (𝐴𝑉 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝑉))
2 exsimpl 1867 . 2 (∃𝑥(𝑥 = 𝐴𝑥𝑉) → ∃𝑥 𝑥 = 𝐴)
31, 2sylbi 217 1 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-clel 2819
This theorem is referenced by:  elisset  2826  clelab  2890  isseti  3506  elex  3509  elex22  3514  spcimgft  3558  bj-issetiv  36843  bj-ceqsaltv  36853  bj-ceqsalgv  36857  bj-spcimdvv  36862  bj-vtoclg1fv  36885  bj-vtoclg  36886  bj-ru  36910  bj-unexg  37004
  Copyright terms: Public domain W3C validator