![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elissetv | Structured version Visualization version GIF version |
Description: An element of a class exists. Version of elisset 2826 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2718. Prefer its use over elisset 2826 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.) |
Ref | Expression |
---|---|
elissetv | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2820 | . 2 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉)) | |
2 | exsimpl 1867 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉) → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: elisset 2826 clelab 2890 isseti 3506 elex 3509 elex22 3514 spcimgft 3558 bj-issetiv 36843 bj-ceqsaltv 36853 bj-ceqsalgv 36857 bj-spcimdvv 36862 bj-vtoclg1fv 36885 bj-vtoclg 36886 bj-ru 36910 bj-unexg 37004 |
Copyright terms: Public domain | W3C validator |