| Mathbox for BJ | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsalvwd | Structured version Visualization version GIF version | ||
| Description: Variant of equsalvw 2003. (Contributed by BJ, 7-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| bj-equsalvwd.nf0 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| bj-equsalvwd.nf | ⊢ (𝜑 → Ⅎ'𝑥𝜒) | 
| bj-equsalvwd.is | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| bj-equsalvwd | ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-equsalvwd.nf0 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | bj-equsalvwd.is | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.74da 804 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝑦 → 𝜓) ↔ (𝑥 = 𝑦 → 𝜒))) | 
| 4 | 1, 3 | albidh 1866 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜒))) | 
| 5 | bj-equsalvwd.nf | . . 3 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
| 6 | bj-equsvt 36780 | . . 3 ⊢ (Ⅎ'𝑥𝜒 → (∀𝑥(𝑥 = 𝑦 → 𝜒) ↔ 𝜒)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜒) ↔ 𝜒)) | 
| 8 | 4, 7 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 Ⅎ'wnnf 36724 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-6 1967 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36725 | 
| This theorem is referenced by: bj-equsexvwd 36782 bj-sbievwd 36783 | 
| Copyright terms: Public domain | W3C validator |