Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsalvwd | Structured version Visualization version GIF version |
Description: Variant of equsalvw 2008. (Contributed by BJ, 7-Oct-2024.) |
Ref | Expression |
---|---|
bj-equsalvwd.nf0 | ⊢ (𝜑 → ∀𝑥𝜑) |
bj-equsalvwd.nf | ⊢ (𝜑 → Ⅎ'𝑥𝜒) |
bj-equsalvwd.is | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bj-equsalvwd | ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsalvwd.nf0 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | bj-equsalvwd.is | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.74da 800 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝑦 → 𝜓) ↔ (𝑥 = 𝑦 → 𝜒))) |
4 | 1, 3 | albidh 1870 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜒))) |
5 | bj-equsalvwd.nf | . . 3 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
6 | bj-equsvt 34888 | . . 3 ⊢ (Ⅎ'𝑥𝜒 → (∀𝑥(𝑥 = 𝑦 → 𝜒) ↔ 𝜒)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜒) ↔ 𝜒)) |
8 | 4, 7 | bitrd 278 | 1 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-bj-nnf 34833 |
This theorem is referenced by: bj-equsexvwd 34890 bj-sbievwd 34891 |
Copyright terms: Public domain | W3C validator |