Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsalvwd Structured version   Visualization version   GIF version

Theorem bj-equsalvwd 34889
Description: Variant of equsalvw 2008. (Contributed by BJ, 7-Oct-2024.)
Hypotheses
Ref Expression
bj-equsalvwd.nf0 (𝜑 → ∀𝑥𝜑)
bj-equsalvwd.nf (𝜑 → Ⅎ'𝑥𝜒)
bj-equsalvwd.is ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
bj-equsalvwd (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem bj-equsalvwd
StepHypRef Expression
1 bj-equsalvwd.nf0 . . 3 (𝜑 → ∀𝑥𝜑)
2 bj-equsalvwd.is . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
32pm5.74da 800 . . 3 (𝜑 → ((𝑥 = 𝑦𝜓) ↔ (𝑥 = 𝑦𝜒)))
41, 3albidh 1870 . 2 (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ ∀𝑥(𝑥 = 𝑦𝜒)))
5 bj-equsalvwd.nf . . 3 (𝜑 → Ⅎ'𝑥𝜒)
6 bj-equsvt 34888 . . 3 (Ⅎ'𝑥𝜒 → (∀𝑥(𝑥 = 𝑦𝜒) ↔ 𝜒))
75, 6syl 17 . 2 (𝜑 → (∀𝑥(𝑥 = 𝑦𝜒) ↔ 𝜒))
84, 7bitrd 278 1 (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-bj-nnf 34833
This theorem is referenced by:  bj-equsexvwd  34890  bj-sbievwd  34891
  Copyright terms: Public domain W3C validator