MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.74da Structured version   Visualization version   GIF version

Theorem pm5.74da 803
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.)
Hypothesis
Ref Expression
pm5.74da.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
pm5.74da (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Proof of Theorem pm5.74da
StepHypRef Expression
1 pm5.74da.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 412 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32pm5.74d 273 1 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  cbvaldvaw  2038  sb4b  2473  ralbidva  3154  cbvraldva  3217  vtocl2d  3528  vtocl2  3532  vtocl3  3533  spc3egv  3569  ralxpxfr2d  3612  elabd2  3636  elrab3t  3658  csbie2df  4406  ordunisuc2  7820  dfom2  7844  pwfseqlem3  10613  lo1resb  15530  rlimresb  15531  o1resb  15532  fsumparts  15772  isprm3  16653  ramval  16979  islindf4  21747  cnntr  23162  fclsbas  23908  metcnp  24429  voliunlem3  25453  ellimc2  25778  limcflf  25782  mdegleb  25969  xrlimcnp  26878  dchrelbas3  27149  lmicom  28715  dmdbr5ati  32351  isarchi3  33141  islinds5  33338  cmpcref  33840  sscoid  35901  bj-equsalvwd  36768  cdlemefrs29bpre0  40390  cdlemkid3N  40927  cdlemkid4  40928  hdmap1eulem  41816  hdmap1eulemOLDN  41817  jm2.25  42988  ntrneik2  44081  ntrneix2  44082  ntrneikb  44083  fourierdlem87  46191
  Copyright terms: Public domain W3C validator