| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2039 sb4b 2475 ralbidva 3153 cbvraldva 3212 vtocl2d 3515 vtocl2 3518 vtocl3 3519 spc3egv 3553 ralxpxfr2d 3596 elabd2 3620 elrab3t 3641 csbie2df 4388 ordunisuc2 7769 dfom2 7793 pwfseqlem3 10546 lo1resb 15466 rlimresb 15467 o1resb 15468 fsumparts 15708 isprm3 16589 ramval 16915 islindf4 21770 cnntr 23185 fclsbas 23931 metcnp 24451 voliunlem3 25475 ellimc2 25800 limcflf 25804 mdegleb 25991 xrlimcnp 26900 dchrelbas3 27171 lmicom 28761 dmdbr5ati 32394 isarchi3 33148 islinds5 33324 cmpcref 33855 sscoid 35947 bj-equsalvwd 36814 cdlemefrs29bpre0 40435 cdlemkid3N 40972 cdlemkid4 40973 hdmap1eulem 41861 hdmap1eulemOLDN 41862 jm2.25 43032 ntrneik2 44125 ntrneix2 44126 ntrneikb 44127 fourierdlem87 46231 |
| Copyright terms: Public domain | W3C validator |