| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2038 sb4b 2473 ralbidva 3150 cbvraldva 3209 vtocl2d 3519 vtocl2 3523 vtocl3 3524 spc3egv 3560 ralxpxfr2d 3603 elabd2 3627 elrab3t 3649 csbie2df 4396 ordunisuc2 7784 dfom2 7808 pwfseqlem3 10573 lo1resb 15490 rlimresb 15491 o1resb 15492 fsumparts 15732 isprm3 16613 ramval 16939 islindf4 21764 cnntr 23179 fclsbas 23925 metcnp 24446 voliunlem3 25470 ellimc2 25795 limcflf 25799 mdegleb 25986 xrlimcnp 26895 dchrelbas3 27166 lmicom 28752 dmdbr5ati 32385 isarchi3 33148 islinds5 33323 cmpcref 33836 sscoid 35906 bj-equsalvwd 36773 cdlemefrs29bpre0 40395 cdlemkid3N 40932 cdlemkid4 40933 hdmap1eulem 41821 hdmap1eulemOLDN 41822 jm2.25 42992 ntrneik2 44085 ntrneix2 44086 ntrneikb 44087 fourierdlem87 46194 |
| Copyright terms: Public domain | W3C validator |