| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2037 sb4b 2479 ralbidva 3161 cbvraldva 3222 vtocl2d 3541 vtocl2 3545 vtocl3 3546 spc3egv 3582 ralxpxfr2d 3625 elabd2 3649 elrab3t 3670 csbie2df 4418 ordunisuc2 7837 dfom2 7861 pwfseqlem3 10672 lo1resb 15578 rlimresb 15579 o1resb 15580 fsumparts 15820 isprm3 16700 ramval 17026 islindf4 21796 cnntr 23211 fclsbas 23957 metcnp 24478 voliunlem3 25503 ellimc2 25828 limcflf 25832 mdegleb 26019 xrlimcnp 26928 dchrelbas3 27199 lmicom 28713 dmdbr5ati 32349 isarchi3 33131 islinds5 33328 cmpcref 33827 sscoid 35877 bj-equsalvwd 36744 cdlemefrs29bpre0 40361 cdlemkid3N 40898 cdlemkid4 40899 hdmap1eulem 41787 hdmap1eulemOLDN 41788 jm2.25 42970 ntrneik2 44063 ntrneix2 44064 ntrneikb 44065 fourierdlem87 46170 |
| Copyright terms: Public domain | W3C validator |