Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 272. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 272 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: cbvaldvaw 2042 sb4b 2475 sb4bOLD 2476 ralbidva 3119 ralbidaOLD 3157 vtocl2d 3486 vtocl2 3490 vtocl3 3491 spc3egv 3532 ralxpxfr2d 3568 elabd2 3594 elrab3t 3616 csbie2df 4371 ordunisuc2 7666 dfom2 7689 pwfseqlem3 10347 lo1resb 15201 rlimresb 15202 o1resb 15203 fsumparts 15446 isprm3 16316 ramval 16637 islindf4 20955 cnntr 22334 fclsbas 23080 metcnp 23603 voliunlem3 24621 ellimc2 24946 limcflf 24950 mdegleb 25134 xrlimcnp 26023 dchrelbas3 26291 lmicom 27053 dmdbr5ati 30685 isarchi3 31343 islinds5 31465 cmpcref 31702 sscoid 34142 bj-equsalvwd 34889 cdlemefrs29bpre0 38337 cdlemkid3N 38874 cdlemkid4 38875 hdmap1eulem 39763 hdmap1eulemOLDN 39764 jm2.25 40737 ntrneik2 41591 ntrneix2 41592 ntrneikb 41593 fourierdlem87 43624 |
Copyright terms: Public domain | W3C validator |