![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 265. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 405 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 265 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: sb4b 2421 ralbidva 3140 ralbida 3171 vtocl2 3474 vtocl3 3476 spc3egv 3516 ralxpxfr2d 3548 elrab3t 3588 ordunisuc2 7369 dfom2 7392 pwfseqlem3 9872 lo1resb 14772 rlimresb 14773 o1resb 14774 fsumparts 15011 isprm3 15873 ramval 16190 islindf4 20674 cnntr 21577 fclsbas 22323 metcnp 22844 voliunlem3 23846 ellimc2 24168 limcflf 24172 mdegleb 24351 xrlimcnp 25238 dchrelbas3 25506 lmicom 26266 dmdbr5ati 29970 vtocl2d 30003 isarchi3 30438 islinds5 30561 cmpcref 30715 sscoid 32835 cdlemefrs29bpre0 36925 cdlemkid3N 37462 cdlemkid4 37463 hdmap1eulem 38351 hdmap1eulemOLDN 38352 jm2.25 38937 ntrneik2 39750 ntrneix2 39751 ntrneikb 39752 fourierdlem87 41855 |
Copyright terms: Public domain | W3C validator |