![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 272. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 411 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 272 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: cbvaldvaw 2039 sb4b 2472 ralbidva 3173 cbvraldva 3234 ralbidaOLD 3266 vtocl2d 3548 vtocl2 3553 vtocl3 3554 spc3egv 3592 ralxpxfr2d 3633 elabd2 3659 elrab3t 3681 csbie2df 4439 ordunisuc2 7835 dfom2 7859 pwfseqlem3 10657 lo1resb 15512 rlimresb 15513 o1resb 15514 fsumparts 15756 isprm3 16624 ramval 16945 islindf4 21612 cnntr 22999 fclsbas 23745 metcnp 24270 voliunlem3 25301 ellimc2 25626 limcflf 25630 mdegleb 25817 xrlimcnp 26709 dchrelbas3 26977 lmicom 28306 dmdbr5ati 31942 isarchi3 32603 islinds5 32754 cmpcref 33128 sscoid 35189 bj-equsalvwd 35961 cdlemefrs29bpre0 39570 cdlemkid3N 40107 cdlemkid4 40108 hdmap1eulem 40996 hdmap1eulemOLDN 40997 jm2.25 42040 ntrneik2 43145 ntrneix2 43146 ntrneikb 43147 fourierdlem87 45207 |
Copyright terms: Public domain | W3C validator |