| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2039 sb4b 2477 ralbidva 3154 cbvraldva 3213 vtocl2d 3516 vtocl2 3519 vtocl3 3520 spc3egv 3554 ralxpxfr2d 3597 elabd2 3621 elrab3t 3642 csbie2df 4392 ordunisuc2 7783 dfom2 7807 pwfseqlem3 10562 lo1resb 15478 rlimresb 15479 o1resb 15480 fsumparts 15720 isprm3 16601 ramval 16927 islindf4 21784 cnntr 23210 fclsbas 23956 metcnp 24476 voliunlem3 25500 ellimc2 25825 limcflf 25829 mdegleb 26016 xrlimcnp 26925 dchrelbas3 27196 lmicom 28786 dmdbr5ati 32423 isarchi3 33197 islinds5 33376 cmpcref 33935 sscoid 36027 bj-equsalvwd 36897 cdlemefrs29bpre0 40568 cdlemkid3N 41105 cdlemkid4 41106 hdmap1eulem 41994 hdmap1eulemOLDN 41995 jm2.25 43156 ntrneik2 44249 ntrneix2 44250 ntrneikb 44251 fourierdlem87 46353 |
| Copyright terms: Public domain | W3C validator |