![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: cbvaldvaw 2034 sb4b 2477 ralbidva 3173 cbvraldva 3236 ralbidaOLD 3268 vtocl2d 3561 vtocl2 3565 vtocl3 3566 spc3egv 3602 ralxpxfr2d 3645 elabd2 3669 elrab3t 3693 csbie2df 4448 ordunisuc2 7864 dfom2 7888 pwfseqlem3 10697 lo1resb 15596 rlimresb 15597 o1resb 15598 fsumparts 15838 isprm3 16716 ramval 17041 islindf4 21875 cnntr 23298 fclsbas 24044 metcnp 24569 voliunlem3 25600 ellimc2 25926 limcflf 25930 mdegleb 26117 xrlimcnp 27025 dchrelbas3 27296 lmicom 28810 dmdbr5ati 32450 isarchi3 33176 islinds5 33374 cmpcref 33810 sscoid 35894 bj-equsalvwd 36762 cdlemefrs29bpre0 40378 cdlemkid3N 40915 cdlemkid4 40916 hdmap1eulem 41804 hdmap1eulemOLDN 41805 jm2.25 42987 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 fourierdlem87 46148 |
Copyright terms: Public domain | W3C validator |