![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: cbvaldvaw 2037 sb4b 2483 ralbidva 3182 cbvraldva 3245 ralbidaOLD 3277 vtocl2d 3574 vtocl2 3578 vtocl3 3579 spc3egv 3616 ralxpxfr2d 3659 elabd2 3683 elrab3t 3707 csbie2df 4466 ordunisuc2 7881 dfom2 7905 pwfseqlem3 10729 lo1resb 15610 rlimresb 15611 o1resb 15612 fsumparts 15854 isprm3 16730 ramval 17055 islindf4 21881 cnntr 23304 fclsbas 24050 metcnp 24575 voliunlem3 25606 ellimc2 25932 limcflf 25936 mdegleb 26123 xrlimcnp 27029 dchrelbas3 27300 lmicom 28814 dmdbr5ati 32454 isarchi3 33167 islinds5 33360 cmpcref 33796 sscoid 35877 bj-equsalvwd 36746 cdlemefrs29bpre0 40353 cdlemkid3N 40890 cdlemkid4 40891 hdmap1eulem 41779 hdmap1eulemOLDN 41780 jm2.25 42956 ntrneik2 44054 ntrneix2 44055 ntrneikb 44056 fourierdlem87 46114 |
Copyright terms: Public domain | W3C validator |