| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2038 sb4b 2473 ralbidva 3154 cbvraldva 3215 vtocl2d 3525 vtocl2 3529 vtocl3 3530 spc3egv 3566 ralxpxfr2d 3609 elabd2 3633 elrab3t 3655 csbie2df 4402 ordunisuc2 7800 dfom2 7824 pwfseqlem3 10589 lo1resb 15506 rlimresb 15507 o1resb 15508 fsumparts 15748 isprm3 16629 ramval 16955 islindf4 21723 cnntr 23138 fclsbas 23884 metcnp 24405 voliunlem3 25429 ellimc2 25754 limcflf 25758 mdegleb 25945 xrlimcnp 26854 dchrelbas3 27125 lmicom 28691 dmdbr5ati 32324 isarchi3 33114 islinds5 33311 cmpcref 33813 sscoid 35874 bj-equsalvwd 36741 cdlemefrs29bpre0 40363 cdlemkid3N 40900 cdlemkid4 40901 hdmap1eulem 41789 hdmap1eulemOLDN 41790 jm2.25 42961 ntrneik2 44054 ntrneix2 44055 ntrneikb 44056 fourierdlem87 46164 |
| Copyright terms: Public domain | W3C validator |