Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 272. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 413 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 272 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: cbvaldvaw 2040 sb4b 2473 sb4bOLD 2474 ralbidva 3168 ralbidaOLD 3250 vtocl2d 3505 vtocl2 3509 vtocl3 3510 spc3egv 3551 ralxpxfr2d 3585 elabd2 3611 elrab3t 3633 csbie2df 4386 ordunisuc2 7750 dfom2 7774 pwfseqlem3 10509 lo1resb 15364 rlimresb 15365 o1resb 15366 fsumparts 15609 isprm3 16477 ramval 16798 islindf4 21143 cnntr 22524 fclsbas 23270 metcnp 23795 voliunlem3 24814 ellimc2 25139 limcflf 25143 mdegleb 25327 xrlimcnp 26216 dchrelbas3 26484 lmicom 27379 dmdbr5ati 31013 isarchi3 31669 islinds5 31801 cmpcref 32039 sscoid 34306 bj-equsalvwd 35053 cdlemefrs29bpre0 38657 cdlemkid3N 39194 cdlemkid4 39195 hdmap1eulem 40083 hdmap1eulemOLDN 40084 jm2.25 41072 ntrneik2 42012 ntrneix2 42013 ntrneikb 42014 fourierdlem87 44059 |
Copyright terms: Public domain | W3C validator |