| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2038 sb4b 2473 ralbidva 3154 cbvraldva 3217 vtocl2d 3528 vtocl2 3532 vtocl3 3533 spc3egv 3569 ralxpxfr2d 3612 elabd2 3636 elrab3t 3658 csbie2df 4406 ordunisuc2 7820 dfom2 7844 pwfseqlem3 10613 lo1resb 15530 rlimresb 15531 o1resb 15532 fsumparts 15772 isprm3 16653 ramval 16979 islindf4 21747 cnntr 23162 fclsbas 23908 metcnp 24429 voliunlem3 25453 ellimc2 25778 limcflf 25782 mdegleb 25969 xrlimcnp 26878 dchrelbas3 27149 lmicom 28715 dmdbr5ati 32351 isarchi3 33141 islinds5 33338 cmpcref 33840 sscoid 35901 bj-equsalvwd 36768 cdlemefrs29bpre0 40390 cdlemkid3N 40927 cdlemkid4 40928 hdmap1eulem 41816 hdmap1eulemOLDN 41817 jm2.25 42988 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 fourierdlem87 46191 |
| Copyright terms: Public domain | W3C validator |