| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cbvaldvaw 2038 sb4b 2474 ralbidva 3155 cbvraldva 3218 vtocl2d 3531 vtocl2 3535 vtocl3 3536 spc3egv 3572 ralxpxfr2d 3615 elabd2 3639 elrab3t 3661 csbie2df 4409 ordunisuc2 7823 dfom2 7847 pwfseqlem3 10620 lo1resb 15537 rlimresb 15538 o1resb 15539 fsumparts 15779 isprm3 16660 ramval 16986 islindf4 21754 cnntr 23169 fclsbas 23915 metcnp 24436 voliunlem3 25460 ellimc2 25785 limcflf 25789 mdegleb 25976 xrlimcnp 26885 dchrelbas3 27156 lmicom 28722 dmdbr5ati 32358 isarchi3 33148 islinds5 33345 cmpcref 33847 sscoid 35908 bj-equsalvwd 36775 cdlemefrs29bpre0 40397 cdlemkid3N 40934 cdlemkid4 40935 hdmap1eulem 41823 hdmap1eulemOLDN 41824 jm2.25 42995 ntrneik2 44088 ntrneix2 44089 ntrneikb 44090 fourierdlem87 46198 |
| Copyright terms: Public domain | W3C validator |