![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 273 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: cbvaldvaw 2040 sb4b 2473 ralbidva 3174 cbvraldva 3235 ralbidaOLD 3267 vtocl2d 3549 vtocl2 3554 vtocl3 3555 spc3egv 3593 ralxpxfr2d 3634 elabd2 3660 elrab3t 3682 csbie2df 4440 ordunisuc2 7837 dfom2 7861 pwfseqlem3 10659 lo1resb 15513 rlimresb 15514 o1resb 15515 fsumparts 15757 isprm3 16625 ramval 16946 islindf4 21613 cnntr 23000 fclsbas 23746 metcnp 24271 voliunlem3 25302 ellimc2 25627 limcflf 25631 mdegleb 25818 xrlimcnp 26710 dchrelbas3 26978 lmicom 28307 dmdbr5ati 31943 isarchi3 32604 islinds5 32755 cmpcref 33129 sscoid 35190 bj-equsalvwd 35962 cdlemefrs29bpre0 39571 cdlemkid3N 40108 cdlemkid4 40109 hdmap1eulem 40997 hdmap1eulemOLDN 40998 jm2.25 42041 ntrneik2 43146 ntrneix2 43147 ntrneikb 43148 fourierdlem87 45208 |
Copyright terms: Public domain | W3C validator |