Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74da | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). Variant of pm5.74d 272. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
pm5.74da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.74da | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 413 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.74d 272 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: cbvaldvaw 2041 sb4b 2475 sb4bOLD 2476 ralbidva 3111 ralbidaOLD 3160 vtocl2d 3496 vtocl2 3500 vtocl3 3501 spc3egv 3542 ralxpxfr2d 3576 elabd2 3601 elrab3t 3623 csbie2df 4374 ordunisuc2 7691 dfom2 7714 pwfseqlem3 10416 lo1resb 15273 rlimresb 15274 o1resb 15275 fsumparts 15518 isprm3 16388 ramval 16709 islindf4 21045 cnntr 22426 fclsbas 23172 metcnp 23697 voliunlem3 24716 ellimc2 25041 limcflf 25045 mdegleb 25229 xrlimcnp 26118 dchrelbas3 26386 lmicom 27149 dmdbr5ati 30784 isarchi3 31441 islinds5 31563 cmpcref 31800 sscoid 34215 bj-equsalvwd 34962 cdlemefrs29bpre0 38410 cdlemkid3N 38947 cdlemkid4 38948 hdmap1eulem 39836 hdmap1eulemOLDN 39837 jm2.25 40821 ntrneik2 41702 ntrneix2 41703 ntrneikb 41704 fourierdlem87 43734 |
Copyright terms: Public domain | W3C validator |