Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.23t | Structured version Visualization version GIF version |
Description: Statement 19.23t 2206 proved from modalK (obsoleting 19.23v 1946). (Contributed by BJ, 2-Dec-2023.) |
Ref | Expression |
---|---|
bj-19.23t | ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnf-exlim 34865 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) | |
2 | bj-nnfa 34837 | . . . 4 ⊢ (Ⅎ'𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
3 | 2 | imim2d 57 | . . 3 ⊢ (Ⅎ'𝑥𝜓 → ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
4 | 19.38 1842 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl6 35 | . 2 ⊢ (Ⅎ'𝑥𝜓 → ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
6 | 1, 5 | impbid 211 | 1 ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-bj-nnf 34833 |
This theorem is referenced by: bj-pm11.53vw 34885 bj-equsvt 34888 |
Copyright terms: Public domain | W3C validator |