Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.23t Structured version   Visualization version   GIF version

Theorem bj-19.23t 34529
Description: Statement 19.23t 2208 proved from modalK (obsoleting 19.23v 1943). (Contributed by BJ, 2-Dec-2023.)
Assertion
Ref Expression
bj-19.23t (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))

Proof of Theorem bj-19.23t
StepHypRef Expression
1 bj-nnf-exlim 34515 . 2 (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓)))
2 bj-nnfa 34490 . . . 4 (Ⅎ'𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
32imim2d 57 . . 3 (Ⅎ'𝑥𝜓 → ((∃𝑥𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
4 19.38 1840 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
53, 4syl6 35 . 2 (Ⅎ'𝑥𝜓 → ((∃𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓)))
61, 5impbid 215 1 (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536  wex 1781  Ⅎ'wnnf 34485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-bj-nnf 34486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator