| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.23t | Structured version Visualization version GIF version | ||
| Description: Statement 19.23t 2210 proved from modalK (obsoleting 19.23v 1942). (Contributed by BJ, 2-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-19.23t | ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnf-exlim 36757 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) | |
| 2 | bj-nnfa 36729 | . . . 4 ⊢ (Ⅎ'𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 2 | imim2d 57 | . . 3 ⊢ (Ⅎ'𝑥𝜓 → ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
| 4 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl6 35 | . 2 ⊢ (Ⅎ'𝑥𝜓 → ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| 6 | 1, 5 | impbid 212 | 1 ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36725 |
| This theorem is referenced by: bj-pm11.53vw 36777 bj-equsvt 36780 |
| Copyright terms: Public domain | W3C validator |