Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabeqd Structured version   Visualization version   GIF version

Theorem bj-gabeqd 36121
Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.)
Hypotheses
Ref Expression
bj-gabeqd.nf (𝜑 → ∀𝑥𝜑)
bj-gabeqd.c (𝜑𝐴 = 𝐵)
bj-gabeqd.f (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bj-gabeqd (𝜑 → {𝐴𝑥𝜓} = {𝐵𝑥𝜒})

Proof of Theorem bj-gabeqd
StepHypRef Expression
1 bj-gabeqd.nf . . 3 (𝜑 → ∀𝑥𝜑)
2 bj-gabeqd.c . . 3 (𝜑𝐴 = 𝐵)
3 bj-gabeqd.f . . . 4 (𝜑 → (𝜓𝜒))
43biimpd 228 . . 3 (𝜑 → (𝜓𝜒))
51, 2, 4bj-gabssd 36120 . 2 (𝜑 → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})
62eqcomd 2737 . . 3 (𝜑𝐵 = 𝐴)
73biimprd 247 . . 3 (𝜑 → (𝜒𝜓))
81, 6, 7bj-gabssd 36120 . 2 (𝜑 → {𝐵𝑥𝜒} ⊆ {𝐴𝑥𝜓})
95, 8eqssd 3999 1 (𝜑 → {𝐴𝑥𝜓} = {𝐵𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538   = wceq 1540  {bj-cgab 36117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-v 3475  df-in 3955  df-ss 3965  df-bj-gab 36118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator