Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gabeqd | Structured version Visualization version GIF version |
Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
Ref | Expression |
---|---|
bj-gabeqd.nf | ⊢ (𝜑 → ∀𝑥𝜑) |
bj-gabeqd.c | ⊢ (𝜑 → 𝐴 = 𝐵) |
bj-gabeqd.f | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bj-gabeqd | ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} = {𝐵 ∣ 𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-gabeqd.nf | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | bj-gabeqd.c | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | bj-gabeqd.f | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
5 | 1, 2, 4 | bj-gabssd 35103 | . 2 ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) |
6 | 2 | eqcomd 2745 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) |
7 | 3 | biimprd 247 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
8 | 1, 6, 7 | bj-gabssd 35103 | . 2 ⊢ (𝜑 → {𝐵 ∣ 𝑥 ∣ 𝜒} ⊆ {𝐴 ∣ 𝑥 ∣ 𝜓}) |
9 | 5, 8 | eqssd 3942 | 1 ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} = {𝐵 ∣ 𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 {bj-cgab 35100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-v 3432 df-in 3898 df-ss 3908 df-bj-gab 35101 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |