Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbaeb Structured version   Visualization version   GIF version

Theorem bj-hbaeb 34739
Description: Biconditional version of hbae 2430. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-hbaeb (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧𝑥 𝑥 = 𝑦)

Proof of Theorem bj-hbaeb
StepHypRef Expression
1 bj-hbaeb2 34738 . 2 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)
2 alcom 2160 . 2 (∀𝑥𝑧 𝑥 = 𝑦 ↔ ∀𝑧𝑥 𝑥 = 𝑦)
31, 2bitri 278 1 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2371
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator