| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbsb3 | Structured version Visualization version GIF version | ||
| Description: Shorter proof of hbsb3 2490. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-hbsb3.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| bj-hbsb3 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-hbsb3t 36748 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
| 2 | bj-hbsb3.1 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 3 | 1, 2 | mpg 1796 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |