Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbsb3 | Structured version Visualization version GIF version |
Description: Shorter proof of hbsb3 2506. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-hbsb3.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
bj-hbsb3 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbsb3t 34507 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
2 | bj-hbsb3.1 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |