Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbsb3 | Structured version Visualization version GIF version |
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out bj-hbsb3v 34534 for a weaker version requiring less axioms. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbsb3.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
hbsb3 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb3.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | sbimi 2080 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑) |
3 | hbsb2a 2503 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | syl 17 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: nfs1 2507 axc16ALT 2508 |
Copyright terms: Public domain | W3C validator |