|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hbsb3 | Structured version Visualization version GIF version | ||
| Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2377. Check out bj-hbsb3v 36816 for a weaker version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hbsb3.1 | ⊢ (𝜑 → ∀𝑦𝜑) | 
| Ref | Expression | 
|---|---|
| hbsb3 | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbsb3.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | sbimi 2074 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑) | 
| 3 | hbsb2a 2489 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: nfs1 2493 axc16ALT 2494 | 
| Copyright terms: Public domain | W3C validator |