MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb3 Structured version   Visualization version   GIF version

Theorem hbsb3 2491
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2372. Check out bj-hbsb3v 34924 for a weaker version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
hbsb3.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
hbsb3 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem hbsb3
StepHypRef Expression
1 hbsb3.1 . . 3 (𝜑 → ∀𝑦𝜑)
21sbimi 2078 . 2 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑)
3 hbsb2a 2488 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
42, 3syl 17 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  nfs1  2492  axc16ALT  2493
  Copyright terms: Public domain W3C validator