![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbsb3t | Structured version Visualization version GIF version |
Description: A theorem close to a closed form of hbsb3 2489. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-hbsb3t | ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbim 2069 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑)) | |
2 | hbsb2a 2486 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 [wsb 2061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-10 2138 ax-12 2174 ax-13 2374 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1776 df-nf 1780 df-sb 2062 |
This theorem is referenced by: bj-hbsb3 36771 bj-nfs1t 36772 |
Copyright terms: Public domain | W3C validator |