Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfexd | Structured version Visualization version GIF version |
Description: Variant of nfexd 2330. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-nfald.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
bj-nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
bj-nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1788 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
2 | bj-nfald.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
3 | bj-nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1866 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | bj-nfald 35211 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
6 | 5 | nfnd 1866 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
7 | 1, 6 | nfxfrd 1861 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1541 ∃wex 1787 Ⅎwnf 1791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2143 ax-11 2160 ax-12 2177 |
This theorem depends on definitions: df-bi 210 df-or 848 df-ex 1788 df-nf 1792 |
This theorem is referenced by: copsex2d 35213 |
Copyright terms: Public domain | W3C validator |