Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfexd Structured version   Visualization version   GIF version

Theorem bj-nfexd 35369
Description: Variant of nfexd 2322. (Contributed by BJ, 25-Dec-2023.)
Hypotheses
Ref Expression
bj-nfald.1 (𝜑 → ∀𝑦𝜑)
bj-nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
bj-nfexd (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem bj-nfexd
StepHypRef Expression
1 df-ex 1781 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
2 bj-nfald.1 . . . 4 (𝜑 → ∀𝑦𝜑)
3 bj-nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1860 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4bj-nfald 35368 . . 3 (𝜑 → Ⅎ𝑥𝑦 ¬ 𝜓)
65nfnd 1860 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓)
71, 6nfxfrd 1855 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by:  copsex2d  35370
  Copyright terms: Public domain W3C validator