Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfexd | Structured version Visualization version GIF version |
Description: Variant of nfexd 2322. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-nfald.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
bj-nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
bj-nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1781 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
2 | bj-nfald.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
3 | bj-nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1860 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | bj-nfald 35368 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
6 | 5 | nfnd 1860 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
7 | 1, 6 | nfxfrd 1855 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1780 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: copsex2d 35370 |
Copyright terms: Public domain | W3C validator |