MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnd Structured version   Visualization version   GIF version

Theorem nfnd 1858
Description: Deduction associated with nfnt 1856. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfnd (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfnt 1856 . 2 (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfand  1897  nfan1  2201  hbnt  2294  nfexd  2328  cbvexdw  2337  cbvexd  2407  nfexd2  2445  nfned  3028  nfneld  3039  nfrexdw  3286  nfrexd  3349  cbvexeqsetf  3465  axpowndlem3  10559  axpowndlem4  10560  axregndlem2  10563  axregnd  10564  cbvex1v  35071  axnulg  35089  distel  35798  bj-cbvexdv  36795  bj-nfexd  37133  wl-issetft  37577
  Copyright terms: Public domain W3C validator