![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version |
Description: Deduction associated with nfnt 1855. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfnt 1855 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfand 1896 nfan1 2201 hbnt 2298 nfexd 2333 cbvexdw 2345 cbvexd 2416 nfexd2 2454 nfned 3050 nfneld 3061 nfrexdw 3316 nfrexd 3381 cbvexeqsetf 3503 axpowndlem3 10668 axpowndlem4 10669 axregndlem2 10672 axregnd 10673 cbvex1v 35050 axnulg 35068 distel 35767 bj-cbvexdv 36766 bj-nfexd 37104 wl-issetft 37536 |
Copyright terms: Public domain | W3C validator |