| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with nfnt 1856. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfand 1897 nfan1 2200 hbnt 2294 nfexd 2329 cbvexdw 2340 cbvexd 2412 nfexd2 2450 nfned 3034 nfneld 3045 nfrexdw 3290 nfrexd 3352 cbvexeqsetf 3474 axpowndlem3 10611 axpowndlem4 10612 axregndlem2 10615 axregnd 10616 cbvex1v 35051 axnulg 35069 distel 35767 bj-cbvexdv 36764 bj-nfexd 37102 wl-issetft 37546 |
| Copyright terms: Public domain | W3C validator |