| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with nfnt 1857. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1857 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfand 1898 nfan1 2203 hbnt 2296 nfexd 2330 cbvexdw 2339 cbvexd 2408 nfexd2 2446 nfned 3030 nfneld 3041 nfrexdw 3278 nfrexd 3339 cbvexeqsetf 3451 axpowndlem3 10485 axpowndlem4 10486 axregndlem2 10489 axregnd 10490 cbvex1v 35078 axnulg 35111 distel 35837 bj-cbvexdv 36834 bj-nfexd 37172 wl-issetft 37616 |
| Copyright terms: Public domain | W3C validator |