MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnd Structured version   Visualization version   GIF version

Theorem nfnd 1859
Description: Deduction associated with nfnt 1857. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfnd (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfnt 1857 . 2 (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfand  1898  nfan1  2205  hbnt  2298  nfexd  2332  cbvexdw  2341  cbvexd  2410  nfexd2  2448  nfned  3031  nfneld  3042  nfrexdw  3279  nfrexd  3340  cbvexeqsetf  3452  axpowndlem3  10501  axpowndlem4  10502  axregndlem2  10505  axregnd  10506  cbvex1v  35158  axnulg  35191  distel  35917  bj-cbvexdv  36917  bj-nfexd  37255  wl-issetft  37699
  Copyright terms: Public domain W3C validator