| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with nfnt 1857. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1857 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfand 1898 nfan1 2205 hbnt 2298 nfexd 2332 cbvexdw 2341 cbvexd 2410 nfexd2 2448 nfned 3031 nfneld 3042 nfrexdw 3279 nfrexd 3340 cbvexeqsetf 3452 axpowndlem3 10501 axpowndlem4 10502 axregndlem2 10505 axregnd 10506 cbvex1v 35158 axnulg 35191 distel 35917 bj-cbvexdv 36917 bj-nfexd 37255 wl-issetft 37699 |
| Copyright terms: Public domain | W3C validator |