| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with nfnt 1856. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfand 1897 nfan1 2201 hbnt 2294 nfexd 2328 cbvexdw 2337 cbvexd 2406 nfexd2 2444 nfned 3027 nfneld 3038 nfrexdw 3282 nfrexd 3344 cbvexeqsetf 3459 axpowndlem3 10528 axpowndlem4 10529 axregndlem2 10532 axregnd 10533 cbvex1v 35037 axnulg 35055 distel 35764 bj-cbvexdv 36761 bj-nfexd 37099 wl-issetft 37543 |
| Copyright terms: Public domain | W3C validator |