MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnd Structured version   Visualization version   GIF version

Theorem nfnd 1858
Description: Deduction associated with nfnt 1856. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfnd (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfnt 1856 . 2 (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfand  1897  nfan1  2201  hbnt  2294  nfexd  2328  cbvexdw  2337  cbvexd  2406  nfexd2  2444  nfned  3027  nfneld  3038  nfrexdw  3282  nfrexd  3344  cbvexeqsetf  3459  axpowndlem3  10528  axpowndlem4  10529  axregndlem2  10532  axregnd  10533  cbvex1v  35037  axnulg  35055  distel  35764  bj-cbvexdv  36761  bj-nfexd  37099  wl-issetft  37543
  Copyright terms: Public domain W3C validator