MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnd Structured version   Visualization version   GIF version

Theorem nfnd 1857
Description: Deduction associated with nfnt 1855. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfnd (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfnt 1855 . 2 (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfand  1896  nfan1  2201  hbnt  2298  nfexd  2333  cbvexdw  2345  cbvexd  2416  nfexd2  2454  nfned  3050  nfneld  3061  nfrexdw  3316  nfrexd  3381  cbvexeqsetf  3503  axpowndlem3  10668  axpowndlem4  10669  axregndlem2  10672  axregnd  10673  cbvex1v  35050  axnulg  35068  distel  35767  bj-cbvexdv  36766  bj-nfexd  37104  wl-issetft  37536
  Copyright terms: Public domain W3C validator