| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with nfnt 1856. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfand 1897 nfan1 2201 hbnt 2294 nfexd 2328 cbvexdw 2337 cbvexd 2407 nfexd2 2445 nfned 3028 nfneld 3039 nfrexdw 3286 nfrexd 3349 cbvexeqsetf 3465 axpowndlem3 10559 axpowndlem4 10560 axregndlem2 10563 axregnd 10564 cbvex1v 35071 axnulg 35089 distel 35798 bj-cbvexdv 36795 bj-nfexd 37133 wl-issetft 37577 |
| Copyright terms: Public domain | W3C validator |