MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnd Structured version   Visualization version   GIF version

Theorem nfnd 1859
Description: Deduction associated with nfnt 1857. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfnd (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfnt 1857 . 2 (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfand  1898  nfan1  2203  hbnt  2296  nfexd  2330  cbvexdw  2339  cbvexd  2408  nfexd2  2446  nfned  3030  nfneld  3041  nfrexdw  3278  nfrexd  3339  cbvexeqsetf  3451  axpowndlem3  10485  axpowndlem4  10486  axregndlem2  10489  axregnd  10490  cbvex1v  35078  axnulg  35111  distel  35837  bj-cbvexdv  36834  bj-nfexd  37172  wl-issetft  37616
  Copyright terms: Public domain W3C validator