![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version |
Description: Deduction associated with nfnt 1853. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfnt 1853 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1776 df-nf 1780 |
This theorem is referenced by: nfand 1894 nfan1 2197 hbnt 2292 nfexd 2327 cbvexdw 2339 cbvexd 2410 nfexd2 2448 nfned 3041 nfneld 3052 nfrexdw 3307 nfrexd 3370 cbvexeqsetf 3492 axpowndlem3 10636 axpowndlem4 10637 axregndlem2 10640 axregnd 10641 cbvex1v 35066 axnulg 35084 distel 35784 bj-cbvexdv 36782 bj-nfexd 37120 wl-issetft 37562 |
Copyright terms: Public domain | W3C validator |