Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnd | Structured version Visualization version GIF version |
Description: Deduction associated with nfnt 1860. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfnt 1860 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfand 1901 nfan1 2196 hbnt 2294 nfexd 2327 cbvexdw 2338 cbvexd 2408 nfexd2 2446 nfned 3045 nfneld 3056 nfrexd 3235 nfrexdg 3236 vtoclgft 3482 axpowndlem3 10286 axpowndlem4 10287 axregndlem2 10290 axregnd 10291 distel 33685 bj-cbvexdv 34909 bj-nfexd 35236 |
Copyright terms: Public domain | W3C validator |