| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfexd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜓, then it is not free in ∃𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 5 | 2, 4 | nfald 2327 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
| 6 | 5 | nfnd 1858 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfmod2 2552 nfmodv 2553 nfeudw 2585 nfeld 2904 nfopabd 5178 nfttrcld 9670 axrepndlem1 10552 axrepndlem2 10553 axunndlem1 10555 axunnd 10556 axpowndlem2 10558 axpowndlem3 10559 axpowndlem4 10560 axregndlem2 10563 axinfndlem1 10565 axinfnd 10566 axacndlem4 10570 axacndlem5 10571 axacnd 10572 19.9d2rf 32405 hbexg 44553 |
| Copyright terms: Public domain | W3C validator |