![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfexd | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜓, then it is not free in ∃𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎ𝑦𝜑 |
nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1778 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | nfald 2332 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
6 | 5 | nfnd 1857 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
7 | 1, 6 | nfxfrd 1852 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfmod2 2561 nfmodv 2562 nfeudw 2594 nfeld 2920 nfopabd 5234 nfttrcld 9779 axrepndlem1 10661 axrepndlem2 10662 axunndlem1 10664 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axregndlem2 10672 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 19.9d2rf 32498 hbexg 44527 |
Copyright terms: Public domain | W3C validator |