![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfexd | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜓, it is not free in ∃𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎ𝑦𝜑 |
nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1876 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1955 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | nfald 2334 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
6 | 5 | nfnd 1955 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
7 | 1, 6 | nfxfrd 1950 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1651 ∃wex 1875 Ⅎwnf 1879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-10 2185 ax-11 2200 ax-12 2213 |
This theorem depends on definitions: df-bi 199 df-or 875 df-ex 1876 df-nf 1880 |
This theorem is referenced by: nfmod2 2602 nfeud2OLD 2639 nfeld 2948 axrepndlem1 9700 axrepndlem2 9701 axunndlem1 9703 axunnd 9704 axpowndlem2 9706 axpowndlem3 9707 axpowndlem4 9708 axregndlem2 9711 axinfndlem1 9713 axinfnd 9714 axacndlem4 9718 axacndlem5 9719 axacnd 9720 19.9d2rf 29835 hbexg 39530 |
Copyright terms: Public domain | W3C validator |