MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfexd Structured version   Visualization version   GIF version

Theorem nfexd 2330
Description: If 𝑥 is not free in 𝜓, then it is not free in 𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfexd (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfexd
StepHypRef Expression
1 df-ex 1781 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1859 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4nfald 2329 . . 3 (𝜑 → Ⅎ𝑥𝑦 ¬ 𝜓)
65nfnd 1859 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓)
71, 6nfxfrd 1855 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfmod2  2553  nfmodv  2554  nfeudw  2586  nfeld  2906  nfopabd  5157  nfttrcld  9600  axrepndlem1  10483  axrepndlem2  10484  axunndlem1  10486  axunnd  10487  axpowndlem2  10489  axpowndlem3  10490  axpowndlem4  10491  axregndlem2  10494  axinfndlem1  10496  axinfnd  10497  axacndlem4  10501  axacndlem5  10502  axacnd  10503  19.9d2rf  32448  hbexg  44659
  Copyright terms: Public domain W3C validator