MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfexd Structured version   Visualization version   GIF version

Theorem nfexd 2327
Description: If 𝑥 is not free in 𝜓, then it is not free in 𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfexd (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfexd
StepHypRef Expression
1 df-ex 1784 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1862 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4nfald 2326 . . 3 (𝜑 → Ⅎ𝑥𝑦 ¬ 𝜓)
65nfnd 1862 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓)
71, 6nfxfrd 1857 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  nfmod2  2558  nfmodv  2559  nfeudw  2591  nfeld  2917  nfopabd  5138  axrepndlem1  10279  axrepndlem2  10280  axunndlem1  10282  axunnd  10283  axpowndlem2  10285  axpowndlem3  10286  axpowndlem4  10287  axregndlem2  10290  axinfndlem1  10292  axinfnd  10293  axacndlem4  10297  axacndlem5  10298  axacnd  10299  19.9d2rf  30721  nfttrcld  33696  hbexg  42065
  Copyright terms: Public domain W3C validator