MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfexd Structured version   Visualization version   GIF version

Theorem nfexd 2326
Description: If 𝑥 is not free in 𝜓, then it is not free in 𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfexd (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfexd
StepHypRef Expression
1 df-ex 1786 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1864 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4nfald 2325 . . 3 (𝜑 → Ⅎ𝑥𝑦 ¬ 𝜓)
65nfnd 1864 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓)
71, 6nfxfrd 1859 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wex 1785  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  nfmod2  2559  nfmodv  2560  nfeudw  2592  nfeld  2919  nfopabd  5146  nfttrcld  9429  axrepndlem1  10332  axrepndlem2  10333  axunndlem1  10335  axunnd  10336  axpowndlem2  10338  axpowndlem3  10339  axpowndlem4  10340  axregndlem2  10343  axinfndlem1  10345  axinfnd  10346  axacndlem4  10350  axacndlem5  10351  axacnd  10352  19.9d2rf  30799  hbexg  42129
  Copyright terms: Public domain W3C validator