MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfexd Structured version   Visualization version   GIF version

Theorem nfexd 2328
Description: If 𝑥 is not free in 𝜓, then it is not free in 𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfexd (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfexd
StepHypRef Expression
1 df-ex 1780 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1858 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4nfald 2327 . . 3 (𝜑 → Ⅎ𝑥𝑦 ¬ 𝜓)
65nfnd 1858 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓)
71, 6nfxfrd 1854 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfmod2  2551  nfmodv  2552  nfeudw  2584  nfeld  2903  nfopabd  5160  nfttrcld  9606  axrepndlem1  10486  axrepndlem2  10487  axunndlem1  10489  axunnd  10490  axpowndlem2  10492  axpowndlem3  10493  axpowndlem4  10494  axregndlem2  10497  axinfndlem1  10499  axinfnd  10500  axacndlem4  10504  axacndlem5  10505  axacnd  10506  19.9d2rf  32413  hbexg  44540
  Copyright terms: Public domain W3C validator