| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfexd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜓, then it is not free in ∃𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 5 | 2, 4 | nfald 2327 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
| 6 | 5 | nfnd 1858 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfmod2 2551 nfmodv 2552 nfeudw 2584 nfeld 2903 nfopabd 5175 nfttrcld 9663 axrepndlem1 10545 axrepndlem2 10546 axunndlem1 10548 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axregndlem2 10556 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 19.9d2rf 32398 hbexg 44546 |
| Copyright terms: Public domain | W3C validator |