Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfexd | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜓, then it is not free in ∃𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎ𝑦𝜑 |
nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
2 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfald.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1861 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | nfald 2322 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ¬ 𝜓) |
6 | 5 | nfnd 1861 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓) |
7 | 1, 6 | nfxfrd 1856 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfmod2 2558 nfmodv 2559 nfeudw 2591 nfeld 2918 nfopabd 5142 nfttrcld 9468 axrepndlem1 10348 axrepndlem2 10349 axunndlem1 10351 axunnd 10352 axpowndlem2 10354 axpowndlem3 10355 axpowndlem4 10356 axregndlem2 10359 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 19.9d2rf 30820 hbexg 42176 |
Copyright terms: Public domain | W3C validator |