Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrab2 | Structured version Visualization version GIF version |
Description: Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.) (Proof shortened by BJ and SN, 8-Aug-2024.) |
Ref | Expression |
---|---|
ssrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi 3619 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑦 ∈ 𝐴) | |
2 | 1 | ssriv 3926 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Copyright terms: Public domain | W3C validator |