Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vecssmodel Structured version   Visualization version   GIF version

Theorem bj-vecssmodel 37305
Description: Vector spaces are modules (elemental version). This is a shorter proof of lveclmod 21069. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vecssmodel (𝐴 ∈ LVec → 𝐴 ∈ LMod)

Proof of Theorem bj-vecssmodel
StepHypRef Expression
1 bj-vecssmod 37304 . 2 LVec ⊆ LMod
21sseli 3959 1 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  LModclmod 20822  LVecclvec 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-ss 3948  df-lvec 21066
This theorem is referenced by:  bj-isrvec2  37323
  Copyright terms: Public domain W3C validator