| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmodel | Structured version Visualization version GIF version | ||
| Description: Vector spaces are modules (elemental version). This is a shorter proof of lveclmod 21069. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vecssmodel | ⊢ (𝐴 ∈ LVec → 𝐴 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vecssmod 37304 | . 2 ⊢ LVec ⊆ LMod | |
| 2 | 1 | sseli 3959 | 1 ⊢ (𝐴 ∈ LVec → 𝐴 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LModclmod 20822 LVecclvec 21065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-lvec 21066 |
| This theorem is referenced by: bj-isrvec2 37323 |
| Copyright terms: Public domain | W3C validator |