| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclg1fv | Structured version Visualization version GIF version | ||
| Description: Version of bj-vtoclg1f 36931 with a disjoint variable condition on 𝑥, 𝑉. This removes dependency on df-sb 2067 and df-clab 2709. Prefer its use over bj-vtoclg1f 36931 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vtoclg1fv.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-vtoclg1fv.maj | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| bj-vtoclg1fv.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bj-vtoclg1fv | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | bj-vtoclg1fv.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | bj-vtoclg1fv.maj | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
| 4 | bj-vtoclg1fv.min | . . 3 ⊢ 𝜑 | |
| 5 | 2, 3, 4 | bj-exlimmpi 36925 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-12 2179 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |