Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclg1f | Structured version Visualization version GIF version |
Description: Reprove vtoclg1f 3494 from bj-vtoclg1f1 35029. This removes dependency on ax-ext 2709, df-cleq 2730 and df-v 3424. Use bj-vtoclg1fv 35031 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
bj-vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
bj-vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
bj-vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | bj-vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-vtoclg1f.maj | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
4 | bj-vtoclg1f.min | . . 3 ⊢ 𝜑 | |
5 | 2, 3, 4 | bj-exlimmpi 35024 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |