Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj115 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj115.1 | ⊢ (𝜂 ↔ ∀𝑛 ∈ 𝐷 (𝜏 → 𝜃)) |
Ref | Expression |
---|---|
bnj115 | ⊢ (𝜂 ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj115.1 | . 2 ⊢ (𝜂 ↔ ∀𝑛 ∈ 𝐷 (𝜏 → 𝜃)) | |
2 | df-ral 3066 | . 2 ⊢ (∀𝑛 ∈ 𝐷 (𝜏 → 𝜃) ↔ ∀𝑛(𝑛 ∈ 𝐷 → (𝜏 → 𝜃))) | |
3 | impexp 454 | . . . 4 ⊢ (((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃) ↔ (𝑛 ∈ 𝐷 → (𝜏 → 𝜃))) | |
4 | 3 | bicomi 227 | . . 3 ⊢ ((𝑛 ∈ 𝐷 → (𝜏 → 𝜃)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
5 | 4 | albii 1827 | . 2 ⊢ (∀𝑛(𝑛 ∈ 𝐷 → (𝜏 → 𝜃)) ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
6 | 1, 2, 5 | 3bitri 300 | 1 ⊢ (𝜂 ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 ∈ wcel 2110 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ral 3066 |
This theorem is referenced by: bnj953 32632 bnj964 32636 bnj1090 32672 bnj1112 32676 |
Copyright terms: Public domain | W3C validator |