| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj115 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj115.1 | ⊢ (𝜂 ↔ ∀𝑛 ∈ 𝐷 (𝜏 → 𝜃)) |
| Ref | Expression |
|---|---|
| bnj115 | ⊢ (𝜂 ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj115.1 | . 2 ⊢ (𝜂 ↔ ∀𝑛 ∈ 𝐷 (𝜏 → 𝜃)) | |
| 2 | df-ral 3061 | . 2 ⊢ (∀𝑛 ∈ 𝐷 (𝜏 → 𝜃) ↔ ∀𝑛(𝑛 ∈ 𝐷 → (𝜏 → 𝜃))) | |
| 3 | impexp 450 | . . . 4 ⊢ (((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃) ↔ (𝑛 ∈ 𝐷 → (𝜏 → 𝜃))) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ ((𝑛 ∈ 𝐷 → (𝜏 → 𝜃)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
| 5 | 4 | albii 1818 | . 2 ⊢ (∀𝑛(𝑛 ∈ 𝐷 → (𝜏 → 𝜃)) ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
| 6 | 1, 2, 5 | 3bitri 297 | 1 ⊢ (𝜂 ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3061 |
| This theorem is referenced by: bnj953 34954 bnj964 34958 bnj1090 34994 bnj1112 34998 |
| Copyright terms: Public domain | W3C validator |