| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1112 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35022. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1112.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj1112 | ⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1112.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 2 | 1 | bnj115 34737 | . 2 ⊢ (𝜓 ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 3 | eleq1w 2814 | . . . . 5 ⊢ (𝑖 = 𝑗 → (𝑖 ∈ ω ↔ 𝑗 ∈ ω)) | |
| 4 | suceq 6374 | . . . . . 6 ⊢ (𝑖 = 𝑗 → suc 𝑖 = suc 𝑗) | |
| 5 | 4 | eleq1d 2816 | . . . . 5 ⊢ (𝑖 = 𝑗 → (suc 𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ (𝑖 = 𝑗 → ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛))) |
| 7 | 4 | fveq2d 6826 | . . . . 5 ⊢ (𝑖 = 𝑗 → (𝑓‘suc 𝑖) = (𝑓‘suc 𝑗)) |
| 8 | fveq2 6822 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
| 9 | 8 | bnj1113 34797 | . . . . 5 ⊢ (𝑖 = 𝑗 → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
| 10 | 7, 9 | eqeq12d 2747 | . . . 4 ⊢ (𝑖 = 𝑗 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 11 | 6, 10 | imbi12d 344 | . . 3 ⊢ (𝑖 = 𝑗 → (((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 12 | 11 | cbvalvw 2037 | . 2 ⊢ (∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 13 | 2, 12 | bitri 275 | 1 ⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ ciun 4939 suc csuc 6308 ‘cfv 6481 ωcom 7796 predc-bnj14 34700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-suc 6312 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: bnj1118 34996 |
| Copyright terms: Public domain | W3C validator |