![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1112 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34016. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1112.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj1112 | ⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1112.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
2 | 1 | bnj115 33731 | . 2 ⊢ (𝜓 ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | eleq1w 2816 | . . . . 5 ⊢ (𝑖 = 𝑗 → (𝑖 ∈ ω ↔ 𝑗 ∈ ω)) | |
4 | suceq 6430 | . . . . . 6 ⊢ (𝑖 = 𝑗 → suc 𝑖 = suc 𝑗) | |
5 | 4 | eleq1d 2818 | . . . . 5 ⊢ (𝑖 = 𝑗 → (suc 𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛)) |
6 | 3, 5 | anbi12d 631 | . . . 4 ⊢ (𝑖 = 𝑗 → ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛))) |
7 | 4 | fveq2d 6895 | . . . . 5 ⊢ (𝑖 = 𝑗 → (𝑓‘suc 𝑖) = (𝑓‘suc 𝑗)) |
8 | fveq2 6891 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
9 | 8 | bnj1113 33791 | . . . . 5 ⊢ (𝑖 = 𝑗 → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
10 | 7, 9 | eqeq12d 2748 | . . . 4 ⊢ (𝑖 = 𝑗 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
11 | 6, 10 | imbi12d 344 | . . 3 ⊢ (𝑖 = 𝑗 → (((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
12 | 11 | cbvalvw 2039 | . 2 ⊢ (∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
13 | 2, 12 | bitri 274 | 1 ⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∪ ciun 4997 suc csuc 6366 ‘cfv 6543 ωcom 7854 predc-bnj14 33694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-suc 6370 df-iota 6495 df-fv 6551 |
This theorem is referenced by: bnj1118 33990 |
Copyright terms: Public domain | W3C validator |