![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1112 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1112.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj1112 | ⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1112.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
2 | 1 | bnj115 34701 | . 2 ⊢ (𝜓 ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | eleq1w 2827 | . . . . 5 ⊢ (𝑖 = 𝑗 → (𝑖 ∈ ω ↔ 𝑗 ∈ ω)) | |
4 | suceq 6461 | . . . . . 6 ⊢ (𝑖 = 𝑗 → suc 𝑖 = suc 𝑗) | |
5 | 4 | eleq1d 2829 | . . . . 5 ⊢ (𝑖 = 𝑗 → (suc 𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛)) |
6 | 3, 5 | anbi12d 631 | . . . 4 ⊢ (𝑖 = 𝑗 → ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛))) |
7 | 4 | fveq2d 6924 | . . . . 5 ⊢ (𝑖 = 𝑗 → (𝑓‘suc 𝑖) = (𝑓‘suc 𝑗)) |
8 | fveq2 6920 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
9 | 8 | bnj1113 34761 | . . . . 5 ⊢ (𝑖 = 𝑗 → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
10 | 7, 9 | eqeq12d 2756 | . . . 4 ⊢ (𝑖 = 𝑗 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
11 | 6, 10 | imbi12d 344 | . . 3 ⊢ (𝑖 = 𝑗 → (((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
12 | 11 | cbvalvw 2035 | . 2 ⊢ (∀𝑖((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
13 | 2, 12 | bitri 275 | 1 ⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ ciun 5015 suc csuc 6397 ‘cfv 6573 ωcom 7903 predc-bnj14 34664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-suc 6401 df-iota 6525 df-fv 6581 |
This theorem is referenced by: bnj1118 34960 |
Copyright terms: Public domain | W3C validator |