Proof of Theorem bnj1090
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1090.28 |
. 2
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) |
| 2 | | impexp 450 |
. . . . . . 7
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂) ↔ (𝑖 ∈ 𝑛 → (𝜎 → 𝜂))) |
| 3 | 2 | exbii 1848 |
. . . . . 6
⊢
(∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂) ↔ ∃𝑗(𝑖 ∈ 𝑛 → (𝜎 → 𝜂))) |
| 4 | | bnj1090.18 |
. . . . . . . . . 10
⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) |
| 5 | 4 | imbi1i 349 |
. . . . . . . . 9
⊢ ((𝜎 → 𝜂) ↔ (((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) |
| 6 | 5 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑗(𝜎 → 𝜂) ↔ ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) |
| 7 | 6 | imbi2i 336 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑛 → ∃𝑗(𝜎 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂))) |
| 8 | | 19.37v 1997 |
. . . . . . 7
⊢
(∃𝑗(𝑖 ∈ 𝑛 → (𝜎 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → ∃𝑗(𝜎 → 𝜂))) |
| 9 | | bnj1090.10 |
. . . . . . . . . . . 12
⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) |
| 10 | 9 | bnj115 34761 |
. . . . . . . . . . 11
⊢ (𝜌 ↔ ∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → [𝑗 / 𝑖]𝜂)) |
| 11 | | bnj1090.17 |
. . . . . . . . . . . . 13
⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) |
| 12 | 11 | imbi2i 336 |
. . . . . . . . . . . 12
⊢ (((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → [𝑗 / 𝑖]𝜂)) |
| 13 | 12 | albii 1819 |
. . . . . . . . . . 11
⊢
(∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) ↔ ∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → [𝑗 / 𝑖]𝜂)) |
| 14 | 10, 13 | bitr4i 278 |
. . . . . . . . . 10
⊢ (𝜌 ↔ ∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) |
| 15 | 14 | imbi1i 349 |
. . . . . . . . 9
⊢ ((𝜌 → 𝜂) ↔ (∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) |
| 16 | | 19.36v 1993 |
. . . . . . . . 9
⊢
(∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂) ↔ (∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) |
| 17 | 15, 16 | bitr4i 278 |
. . . . . . . 8
⊢ ((𝜌 → 𝜂) ↔ ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) |
| 18 | 17 | imbi2i 336 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂))) |
| 19 | 7, 8, 18 | 3bitr4i 303 |
. . . . . 6
⊢
(∃𝑗(𝑖 ∈ 𝑛 → (𝜎 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → (𝜌 → 𝜂))) |
| 20 | 3, 19 | bitr2i 276 |
. . . . 5
⊢ ((𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ ∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂)) |
| 21 | | impexp 450 |
. . . . . 6
⊢ ((((𝑖 ∈ 𝑛 ∧ 𝜎) ∧ (𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) → ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵))) |
| 22 | | bnj256 34742 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) ∧ (𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓))) |
| 23 | 22 | imbi1i 349 |
. . . . . 6
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵) ↔ (((𝑖 ∈ 𝑛 ∧ 𝜎) ∧ (𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 24 | | bnj1090.9 |
. . . . . . 7
⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 25 | 24 | imbi2i 336 |
. . . . . 6
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) → ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵))) |
| 26 | 21, 23, 25 | 3bitr4i 303 |
. . . . 5
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂)) |
| 27 | 20, 26 | bnj133 34763 |
. . . 4
⊢ ((𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ ∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 28 | 27 | albii 1819 |
. . 3
⊢
(∀𝑖(𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ ∀𝑖∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 29 | | df-ral 3053 |
. . 3
⊢
(∀𝑖 ∈
𝑛 (𝜌 → 𝜂) ↔ ∀𝑖(𝑖 ∈ 𝑛 → (𝜌 → 𝜂))) |
| 30 | | bnj1090.19 |
. . . . . 6
⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) |
| 31 | 30 | imbi1i 349 |
. . . . 5
⊢ ((𝜑0 → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 32 | 31 | exbii 1848 |
. . . 4
⊢
(∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵) ↔ ∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 33 | 32 | albii 1819 |
. . 3
⊢
(∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵) ↔ ∀𝑖∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| 34 | 28, 29, 33 | 3bitr4i 303 |
. 2
⊢
(∀𝑖 ∈
𝑛 (𝜌 → 𝜂) ↔ ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) |
| 35 | 1, 34 | sylibr 234 |
1
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) |