Proof of Theorem bnj1090
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj1090.28 | . 2
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 2 |  | impexp 450 | . . . . . . 7
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂) ↔ (𝑖 ∈ 𝑛 → (𝜎 → 𝜂))) | 
| 3 | 2 | exbii 1847 | . . . . . 6
⊢
(∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂) ↔ ∃𝑗(𝑖 ∈ 𝑛 → (𝜎 → 𝜂))) | 
| 4 |  | bnj1090.18 | . . . . . . . . . 10
⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) | 
| 5 | 4 | imbi1i 349 | . . . . . . . . 9
⊢ ((𝜎 → 𝜂) ↔ (((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) | 
| 6 | 5 | exbii 1847 | . . . . . . . 8
⊢
(∃𝑗(𝜎 → 𝜂) ↔ ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) | 
| 7 | 6 | imbi2i 336 | . . . . . . 7
⊢ ((𝑖 ∈ 𝑛 → ∃𝑗(𝜎 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂))) | 
| 8 |  | 19.37v 1990 | . . . . . . 7
⊢
(∃𝑗(𝑖 ∈ 𝑛 → (𝜎 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → ∃𝑗(𝜎 → 𝜂))) | 
| 9 |  | bnj1090.10 | . . . . . . . . . . . 12
⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | 
| 10 | 9 | bnj115 34740 | . . . . . . . . . . 11
⊢ (𝜌 ↔ ∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → [𝑗 / 𝑖]𝜂)) | 
| 11 |  | bnj1090.17 | . . . . . . . . . . . . 13
⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) | 
| 12 | 11 | imbi2i 336 | . . . . . . . . . . . 12
⊢ (((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → [𝑗 / 𝑖]𝜂)) | 
| 13 | 12 | albii 1818 | . . . . . . . . . . 11
⊢
(∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) ↔ ∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → [𝑗 / 𝑖]𝜂)) | 
| 14 | 10, 13 | bitr4i 278 | . . . . . . . . . 10
⊢ (𝜌 ↔ ∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) | 
| 15 | 14 | imbi1i 349 | . . . . . . . . 9
⊢ ((𝜌 → 𝜂) ↔ (∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) | 
| 16 |  | 19.36v 1986 | . . . . . . . . 9
⊢
(∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂) ↔ (∀𝑗((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) | 
| 17 | 15, 16 | bitr4i 278 | . . . . . . . 8
⊢ ((𝜌 → 𝜂) ↔ ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂)) | 
| 18 | 17 | imbi2i 336 | . . . . . . 7
⊢ ((𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → ∃𝑗(((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′) → 𝜂))) | 
| 19 | 7, 8, 18 | 3bitr4i 303 | . . . . . 6
⊢
(∃𝑗(𝑖 ∈ 𝑛 → (𝜎 → 𝜂)) ↔ (𝑖 ∈ 𝑛 → (𝜌 → 𝜂))) | 
| 20 | 3, 19 | bitr2i 276 | . . . . 5
⊢ ((𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ ∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂)) | 
| 21 |  | impexp 450 | . . . . . 6
⊢ ((((𝑖 ∈ 𝑛 ∧ 𝜎) ∧ (𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) → ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵))) | 
| 22 |  | bnj256 34721 | . . . . . . 7
⊢ ((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) ∧ (𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓))) | 
| 23 | 22 | imbi1i 349 | . . . . . 6
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵) ↔ (((𝑖 ∈ 𝑛 ∧ 𝜎) ∧ (𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 24 |  | bnj1090.9 | . . . . . . 7
⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 25 | 24 | imbi2i 336 | . . . . . 6
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) → ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵))) | 
| 26 | 21, 23, 25 | 3bitr4i 303 | . . . . 5
⊢ (((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎) → 𝜂)) | 
| 27 | 20, 26 | bnj133 34742 | . . . 4
⊢ ((𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ ∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 28 | 27 | albii 1818 | . . 3
⊢
(∀𝑖(𝑖 ∈ 𝑛 → (𝜌 → 𝜂)) ↔ ∀𝑖∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 29 |  | df-ral 3061 | . . 3
⊢
(∀𝑖 ∈
𝑛 (𝜌 → 𝜂) ↔ ∀𝑖(𝑖 ∈ 𝑛 → (𝜌 → 𝜂))) | 
| 30 |  | bnj1090.19 | . . . . . 6
⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) | 
| 31 | 30 | imbi1i 349 | . . . . 5
⊢ ((𝜑0 → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 32 | 31 | exbii 1847 | . . . 4
⊢
(∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵) ↔ ∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 33 | 32 | albii 1818 | . . 3
⊢
(∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵) ↔ ∀𝑖∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 34 | 28, 29, 33 | 3bitr4i 303 | . 2
⊢
(∀𝑖 ∈
𝑛 (𝜌 → 𝜂) ↔ ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 35 | 1, 34 | sylibr 234 | 1
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) |