| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj105 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj105 | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8392 | . 2 ⊢ 1o = {∅} | |
| 2 | p0ex 5320 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {csn 4573 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: bnj106 34880 bnj118 34881 bnj121 34882 bnj125 34884 bnj130 34886 bnj153 34892 |
| Copyright terms: Public domain | W3C validator |