Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj105 Structured version   Visualization version   GIF version

Theorem bnj105 34700
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj105 1o ∈ V

Proof of Theorem bnj105
StepHypRef Expression
1 df1o2 8529 . 2 1o = {∅}
2 p0ex 5402 . 2 {∅} ∈ V
31, 2eqeltri 2840 1 1o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  c0 4352  {csn 4648  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-suc 6401  df-1o 8522
This theorem is referenced by:  bnj106  34844  bnj118  34845  bnj121  34846  bnj125  34848  bnj130  34850  bnj153  34856
  Copyright terms: Public domain W3C validator