![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj105 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj105 | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8511 | . 2 ⊢ 1o = {∅} | |
2 | p0ex 5389 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2834 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 ∅c0 4338 {csn 4630 1oc1o 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-pw 4606 df-sn 4631 df-suc 6391 df-1o 8504 |
This theorem is referenced by: bnj106 34860 bnj118 34861 bnj121 34862 bnj125 34864 bnj130 34866 bnj153 34872 |
Copyright terms: Public domain | W3C validator |