| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj105 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj105 | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8444 | . 2 ⊢ 1o = {∅} | |
| 2 | p0ex 5342 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 1oc1o 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 df-suc 6341 df-1o 8437 |
| This theorem is referenced by: bnj106 34865 bnj118 34866 bnj121 34867 bnj125 34869 bnj130 34871 bnj153 34877 |
| Copyright terms: Public domain | W3C validator |