|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1238 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1238.1 | ⊢ (𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | 
| Ref | Expression | 
|---|---|
| bnj1238 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1238.1 | . 2 ⊢ (𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | |
| 2 | bnj1239 34820 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 𝜓) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3070 | 
| This theorem is referenced by: bnj1245 35029 bnj1256 35030 bnj1259 35031 bnj1311 35039 bnj1371 35044 | 
| Copyright terms: Public domain | W3C validator |