![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1259 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33731. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1259.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1259.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1259.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1259.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
bnj1259.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
bnj1259.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
bnj1259.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
Ref | Expression |
---|---|
bnj1259 | ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1259.6 | . 2 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
2 | abid 2714 | . . . 4 ⊢ (ℎ ∈ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩))} ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩))) | |
3 | 2 | bnj1238 33475 | . . 3 ⊢ (ℎ ∈ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
4 | bnj1259.2 | . . . 4 ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
5 | bnj1259.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
6 | eqid 2733 | . . . 4 ⊢ ⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
7 | eqid 2733 | . . . 4 ⊢ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩))} | |
8 | 4, 5, 6, 7 | bnj1234 33682 | . . 3 ⊢ 𝐶 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘⟨𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))⟩))} |
9 | 3, 8 | eleq2s 2852 | . 2 ⊢ (ℎ ∈ 𝐶 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
10 | 1, 9 | bnj771 33433 | 1 ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 {cab 2710 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3406 ∩ cin 3910 ⊆ wss 3911 ⟨cop 4593 class class class wbr 5106 dom cdm 5634 ↾ cres 5636 Fn wfn 6492 ‘cfv 6497 ∧ w-bnj17 33355 predc-bnj14 33357 FrSe w-bnj15 33361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-res 5646 df-iota 6449 df-fun 6499 df-fn 6500 df-fv 6505 df-bnj17 33356 |
This theorem is referenced by: bnj1253 33686 bnj1286 33688 bnj1280 33689 |
Copyright terms: Public domain | W3C validator |