| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1259 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35074. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1259.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1259.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1259.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1259.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
| bnj1259.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
| bnj1259.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
| bnj1259.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
| Ref | Expression |
|---|---|
| bnj1259 | ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1259.6 | . 2 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
| 2 | abid 2713 | . . . 4 ⊢ (ℎ ∈ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))) | |
| 3 | 2 | bnj1238 34818 | . . 3 ⊢ (ℎ ∈ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 4 | bnj1259.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 5 | bnj1259.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 6 | eqid 2731 | . . . 4 ⊢ 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 7 | eqid 2731 | . . . 4 ⊢ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} | |
| 8 | 4, 5, 6, 7 | bnj1234 35025 | . . 3 ⊢ 𝐶 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} |
| 9 | 3, 8 | eleq2s 2849 | . 2 ⊢ (ℎ ∈ 𝐶 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 10 | 1, 9 | bnj771 34776 | 1 ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ∩ cin 3896 ⊆ wss 3897 〈cop 4579 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Fn wfn 6476 ‘cfv 6481 ∧ w-bnj17 34698 predc-bnj14 34700 FrSe w-bnj15 34704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-bnj17 34699 |
| This theorem is referenced by: bnj1253 35029 bnj1286 35031 bnj1280 35032 |
| Copyright terms: Public domain | W3C validator |