| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1259 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35051. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1259.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1259.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1259.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1259.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
| bnj1259.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
| bnj1259.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
| bnj1259.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
| Ref | Expression |
|---|---|
| bnj1259 | ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1259.6 | . 2 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
| 2 | abid 2716 | . . . 4 ⊢ (ℎ ∈ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))) | |
| 3 | 2 | bnj1238 34795 | . . 3 ⊢ (ℎ ∈ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 4 | bnj1259.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 5 | bnj1259.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 6 | eqid 2734 | . . . 4 ⊢ 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 7 | eqid 2734 | . . . 4 ⊢ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} | |
| 8 | 4, 5, 6, 7 | bnj1234 35002 | . . 3 ⊢ 𝐶 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} |
| 9 | 3, 8 | eleq2s 2851 | . 2 ⊢ (ℎ ∈ 𝐶 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 10 | 1, 9 | bnj771 34753 | 1 ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2712 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 {crab 3419 ∩ cin 3930 ⊆ wss 3931 〈cop 4612 class class class wbr 5123 dom cdm 5665 ↾ cres 5667 Fn wfn 6536 ‘cfv 6541 ∧ w-bnj17 34675 predc-bnj14 34677 FrSe w-bnj15 34681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fn 6544 df-fv 6549 df-bnj17 34676 |
| This theorem is referenced by: bnj1253 35006 bnj1286 35008 bnj1280 35009 |
| Copyright terms: Public domain | W3C validator |