Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1259 Structured version   Visualization version   GIF version

Theorem bnj1259 34979
Description: Technical lemma for bnj60 35025. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1259.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1259.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1259.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1259.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1259.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1259.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1259.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1259 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,   𝑓,𝐺,   𝑅,𝑓   ,𝑌   𝑓,𝑑,   𝑥,𝑓,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑔,,𝑑)   𝐵(𝑥,𝑦,𝑔,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝑅(𝑥,𝑦,𝑔,,𝑑)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑔,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑔,𝑑)

Proof of Theorem bnj1259
StepHypRef Expression
1 bnj1259.6 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
2 abid 2711 . . . 4 ( ∈ { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))} ↔ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
32bnj1238 34769 . . 3 ( ∈ { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑𝐵 Fn 𝑑)
4 bnj1259.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1259.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 eqid 2729 . . . 4 𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 eqid 2729 . . . 4 { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
84, 5, 6, 7bnj1234 34976 . . 3 𝐶 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
93, 8eleq2s 2846 . 2 (𝐶 → ∃𝑑𝐵 Fn 𝑑)
101, 9bnj771 34727 1 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  cin 3910  wss 3911  cop 4591   class class class wbr 5102  dom cdm 5631  cres 5633   Fn wfn 6494  cfv 6499  w-bnj17 34649   predc-bnj14 34651   FrSe w-bnj15 34655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-bnj17 34650
This theorem is referenced by:  bnj1253  34980  bnj1286  34982  bnj1280  34983
  Copyright terms: Public domain W3C validator