Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1245 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1245.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1245.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1245.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1245.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
bnj1245.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
bnj1245.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
bnj1245.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
bnj1245.8 | ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1245.9 | ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} |
Ref | Expression |
---|---|
bnj1245 | ⊢ (𝜑 → dom ℎ ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1245.6 | . . . 4 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
2 | 1 | bnj1247 32688 | . . 3 ⊢ (𝜑 → ℎ ∈ 𝐶) |
3 | bnj1245.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
4 | bnj1245.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
5 | bnj1245.8 | . . . 4 ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
6 | bnj1245.9 | . . . 4 ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} | |
7 | 3, 4, 5, 6 | bnj1234 32893 | . . 3 ⊢ 𝐶 = 𝐾 |
8 | 2, 7 | eleqtrdi 2849 | . 2 ⊢ (𝜑 → ℎ ∈ 𝐾) |
9 | 6 | abeq2i 2874 | . . . . . 6 ⊢ (ℎ ∈ 𝐾 ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))) |
10 | 9 | bnj1238 32686 | . . . . 5 ⊢ (ℎ ∈ 𝐾 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
11 | 10 | bnj1196 32674 | . . . 4 ⊢ (ℎ ∈ 𝐾 → ∃𝑑(𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑)) |
12 | bnj1245.1 | . . . . . . 7 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
13 | 12 | abeq2i 2874 | . . . . . 6 ⊢ (𝑑 ∈ 𝐵 ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
14 | 13 | simplbi 497 | . . . . 5 ⊢ (𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴) |
15 | fndm 6520 | . . . . 5 ⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) | |
16 | 14, 15 | bnj1241 32687 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → dom ℎ ⊆ 𝐴) |
17 | 11, 16 | bnj593 32625 | . . 3 ⊢ (ℎ ∈ 𝐾 → ∃𝑑dom ℎ ⊆ 𝐴) |
18 | 17 | bnj937 32651 | . 2 ⊢ (ℎ ∈ 𝐾 → dom ℎ ⊆ 𝐴) |
19 | 8, 18 | syl 17 | 1 ⊢ (𝜑 → dom ℎ ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ∩ cin 3882 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 ∧ w-bnj17 32565 predc-bnj14 32567 FrSe w-bnj15 32571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-bnj17 32566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |