Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1245 Structured version   Visualization version   GIF version

Theorem bnj1245 34990
Description: Technical lemma for bnj60 35038. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1245.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1245.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1245.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1245.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1245.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1245.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1245.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
bnj1245.8 𝑍 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1245.9 𝐾 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍))}
Assertion
Ref Expression
bnj1245 (𝜑 → dom 𝐴)
Distinct variable groups:   𝐴,𝑑   𝐵,𝑓,   𝑓,𝐺,   ,𝑌   𝑓,𝑍   𝑓,𝑑,   𝑥,𝑓,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑓,𝑔,)   𝐵(𝑥,𝑦,𝑔,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝑅(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑔,𝑑)   𝐾(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑔,𝑑)   𝑍(𝑥,𝑦,𝑔,,𝑑)

Proof of Theorem bnj1245
StepHypRef Expression
1 bnj1245.6 . . . 4 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
21bnj1247 34784 . . 3 (𝜑𝐶)
3 bnj1245.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1245.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1245.8 . . . 4 𝑍 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
6 bnj1245.9 . . . 4 𝐾 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍))}
73, 4, 5, 6bnj1234 34989 . . 3 𝐶 = 𝐾
82, 7eleqtrdi 2854 . 2 (𝜑𝐾)
96eqabri 2888 . . . . . 6 (𝐾 ↔ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍)))
109bnj1238 34782 . . . . 5 (𝐾 → ∃𝑑𝐵 Fn 𝑑)
1110bnj1196 34770 . . . 4 (𝐾 → ∃𝑑(𝑑𝐵 Fn 𝑑))
12 bnj1245.1 . . . . . . 7 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1312eqabri 2888 . . . . . 6 (𝑑𝐵 ↔ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1413simplbi 497 . . . . 5 (𝑑𝐵𝑑𝐴)
15 fndm 6682 . . . . 5 ( Fn 𝑑 → dom = 𝑑)
1614, 15bnj1241 34783 . . . 4 ((𝑑𝐵 Fn 𝑑) → dom 𝐴)
1711, 16bnj593 34721 . . 3 (𝐾 → ∃𝑑dom 𝐴)
1817bnj937 34747 . 2 (𝐾 → dom 𝐴)
198, 18syl 17 1 (𝜑 → dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976  cop 4654   class class class wbr 5166  dom cdm 5700  cres 5702   Fn wfn 6568  cfv 6573  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-bnj17 34663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator