|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1245 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35077. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1245.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | 
| bnj1245.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | 
| bnj1245.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | 
| bnj1245.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) | 
| bnj1245.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} | 
| bnj1245.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | 
| bnj1245.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) | 
| bnj1245.8 | ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | 
| bnj1245.9 | ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} | 
| Ref | Expression | 
|---|---|
| bnj1245 | ⊢ (𝜑 → dom ℎ ⊆ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1245.6 | . . . 4 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
| 2 | 1 | bnj1247 34823 | . . 3 ⊢ (𝜑 → ℎ ∈ 𝐶) | 
| 3 | bnj1245.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 4 | bnj1245.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 5 | bnj1245.8 | . . . 4 ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 6 | bnj1245.9 | . . . 4 ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} | |
| 7 | 3, 4, 5, 6 | bnj1234 35028 | . . 3 ⊢ 𝐶 = 𝐾 | 
| 8 | 2, 7 | eleqtrdi 2850 | . 2 ⊢ (𝜑 → ℎ ∈ 𝐾) | 
| 9 | 6 | eqabri 2884 | . . . . . 6 ⊢ (ℎ ∈ 𝐾 ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))) | 
| 10 | 9 | bnj1238 34821 | . . . . 5 ⊢ (ℎ ∈ 𝐾 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) | 
| 11 | 10 | bnj1196 34809 | . . . 4 ⊢ (ℎ ∈ 𝐾 → ∃𝑑(𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑)) | 
| 12 | bnj1245.1 | . . . . . . 7 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 13 | 12 | eqabri 2884 | . . . . . 6 ⊢ (𝑑 ∈ 𝐵 ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) | 
| 14 | 13 | simplbi 497 | . . . . 5 ⊢ (𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴) | 
| 15 | fndm 6670 | . . . . 5 ⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) | |
| 16 | 14, 15 | bnj1241 34822 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → dom ℎ ⊆ 𝐴) | 
| 17 | 11, 16 | bnj593 34760 | . . 3 ⊢ (ℎ ∈ 𝐾 → ∃𝑑dom ℎ ⊆ 𝐴) | 
| 18 | 17 | bnj937 34786 | . 2 ⊢ (ℎ ∈ 𝐾 → dom ℎ ⊆ 𝐴) | 
| 19 | 8, 18 | syl 17 | 1 ⊢ (𝜑 → dom ℎ ⊆ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2713 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3435 ∩ cin 3949 ⊆ wss 3950 〈cop 4631 class class class wbr 5142 dom cdm 5684 ↾ cres 5686 Fn wfn 6555 ‘cfv 6560 ∧ w-bnj17 34701 predc-bnj14 34703 FrSe w-bnj15 34707 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 df-bnj17 34702 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |