| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1245 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35098. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1245.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1245.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1245.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1245.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
| bnj1245.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
| bnj1245.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
| bnj1245.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
| bnj1245.8 | ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1245.9 | ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} |
| Ref | Expression |
|---|---|
| bnj1245 | ⊢ (𝜑 → dom ℎ ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1245.6 | . . . 4 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
| 2 | 1 | bnj1247 34844 | . . 3 ⊢ (𝜑 → ℎ ∈ 𝐶) |
| 3 | bnj1245.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 4 | bnj1245.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 5 | bnj1245.8 | . . . 4 ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 6 | bnj1245.9 | . . . 4 ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} | |
| 7 | 3, 4, 5, 6 | bnj1234 35049 | . . 3 ⊢ 𝐶 = 𝐾 |
| 8 | 2, 7 | eleqtrdi 2845 | . 2 ⊢ (𝜑 → ℎ ∈ 𝐾) |
| 9 | 6 | eqabri 2879 | . . . . . 6 ⊢ (ℎ ∈ 𝐾 ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))) |
| 10 | 9 | bnj1238 34842 | . . . . 5 ⊢ (ℎ ∈ 𝐾 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 11 | 10 | bnj1196 34830 | . . . 4 ⊢ (ℎ ∈ 𝐾 → ∃𝑑(𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑)) |
| 12 | bnj1245.1 | . . . . . . 7 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 13 | 12 | eqabri 2879 | . . . . . 6 ⊢ (𝑑 ∈ 𝐵 ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 14 | 13 | simplbi 497 | . . . . 5 ⊢ (𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴) |
| 15 | fndm 6646 | . . . . 5 ⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) | |
| 16 | 14, 15 | bnj1241 34843 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → dom ℎ ⊆ 𝐴) |
| 17 | 11, 16 | bnj593 34781 | . . 3 ⊢ (ℎ ∈ 𝐾 → ∃𝑑dom ℎ ⊆ 𝐴) |
| 18 | 17 | bnj937 34807 | . 2 ⊢ (ℎ ∈ 𝐾 → dom ℎ ⊆ 𝐴) |
| 19 | 8, 18 | syl 17 | 1 ⊢ (𝜑 → dom ℎ ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2714 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ∩ cin 3930 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 ∧ w-bnj17 34722 predc-bnj14 34724 FrSe w-bnj15 34728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-bnj17 34723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |