Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1245 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1245.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1245.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1245.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1245.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
bnj1245.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
bnj1245.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
bnj1245.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
bnj1245.8 | ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1245.9 | ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} |
Ref | Expression |
---|---|
bnj1245 | ⊢ (𝜑 → dom ℎ ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1245.6 | . . . 4 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
2 | 1 | bnj1247 32788 | . . 3 ⊢ (𝜑 → ℎ ∈ 𝐶) |
3 | bnj1245.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
4 | bnj1245.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
5 | bnj1245.8 | . . . 4 ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
6 | bnj1245.9 | . . . 4 ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} | |
7 | 3, 4, 5, 6 | bnj1234 32993 | . . 3 ⊢ 𝐶 = 𝐾 |
8 | 2, 7 | eleqtrdi 2849 | . 2 ⊢ (𝜑 → ℎ ∈ 𝐾) |
9 | 6 | abeq2i 2875 | . . . . . 6 ⊢ (ℎ ∈ 𝐾 ↔ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))) |
10 | 9 | bnj1238 32786 | . . . . 5 ⊢ (ℎ ∈ 𝐾 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
11 | 10 | bnj1196 32774 | . . . 4 ⊢ (ℎ ∈ 𝐾 → ∃𝑑(𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑)) |
12 | bnj1245.1 | . . . . . . 7 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
13 | 12 | abeq2i 2875 | . . . . . 6 ⊢ (𝑑 ∈ 𝐵 ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
14 | 13 | simplbi 498 | . . . . 5 ⊢ (𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴) |
15 | fndm 6536 | . . . . 5 ⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) | |
16 | 14, 15 | bnj1241 32787 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → dom ℎ ⊆ 𝐴) |
17 | 11, 16 | bnj593 32725 | . . 3 ⊢ (ℎ ∈ 𝐾 → ∃𝑑dom ℎ ⊆ 𝐴) |
18 | 17 | bnj937 32751 | . 2 ⊢ (ℎ ∈ 𝐾 → dom ℎ ⊆ 𝐴) |
19 | 8, 18 | syl 17 | 1 ⊢ (𝜑 → dom ℎ ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 ∩ cin 3886 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 Fn wfn 6428 ‘cfv 6433 ∧ w-bnj17 32665 predc-bnj14 32667 FrSe w-bnj15 32671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-bnj17 32666 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |