Step | Hyp | Ref
| Expression |
1 | | biid 260 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
2 | 1 | bnj1232 32783 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → 𝑅 FrSe 𝐴) |
3 | | ssrab2 4013 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ⊆ 𝐷 |
4 | | bnj1311.4 |
. . . . . . . . 9
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
5 | 1 | bnj1235 32784 |
. . . . . . . . . . 11
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → 𝑔 ∈ 𝐶) |
6 | | bnj1311.2 |
. . . . . . . . . . . 12
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
7 | | bnj1311.3 |
. . . . . . . . . . . 12
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
8 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
9 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} |
10 | 6, 7, 8, 9 | bnj1234 32993 |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} |
11 | 5, 10 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → 𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))}) |
12 | | abid 2719 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} ↔ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))) |
13 | 12 | bnj1238 32786 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
14 | 13 | bnj1196 32774 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑)) |
15 | | bnj1311.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
16 | 15 | abeq2i 2875 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ 𝐵 ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
17 | 16 | simplbi 498 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴) |
18 | | fndm 6536 |
. . . . . . . . . . . . 13
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
19 | 17, 18 | bnj1241 32787 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → dom 𝑔 ⊆ 𝐴) |
20 | 14, 19 | bnj593 32725 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} → ∃𝑑dom 𝑔 ⊆ 𝐴) |
21 | 20 | bnj937 32751 |
. . . . . . . . . 10
⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} → dom 𝑔 ⊆ 𝐴) |
22 | | ssinss1 4171 |
. . . . . . . . . 10
⊢ (dom
𝑔 ⊆ 𝐴 → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) |
23 | 11, 21, 22 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) |
24 | 4, 23 | eqsstrid 3969 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → 𝐷 ⊆ 𝐴) |
25 | 3, 24 | sstrid 3932 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ⊆ 𝐴) |
26 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
27 | | biid 260 |
. . . . . . . 8
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥)) |
28 | 15, 6, 7, 4, 26, 1,
27 | bnj1253 32997 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ≠ ∅) |
29 | | nfrab1 3317 |
. . . . . . . . 9
⊢
Ⅎ𝑥{𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
30 | 29 | nfcrii 2899 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} → ∀𝑥 𝑧 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}) |
31 | 30 | bnj1228 32991 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) |
32 | 2, 25, 28, 31 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → ∃𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) |
33 | | ax-5 1913 |
. . . . . . 7
⊢ (𝑅 FrSe 𝐴 → ∀𝑥 𝑅 FrSe 𝐴) |
34 | 15 | bnj1309 33002 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
35 | 7, 34 | bnj1307 33003 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
36 | 35 | hblem 2870 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐶 → ∀𝑥 𝑔 ∈ 𝐶) |
37 | 35 | hblem 2870 |
. . . . . . 7
⊢ (ℎ ∈ 𝐶 → ∀𝑥 ℎ ∈ 𝐶) |
38 | | ax-5 1913 |
. . . . . . 7
⊢ ((𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷) → ∀𝑥(𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) |
39 | 33, 36, 37, 38 | bnj982 32758 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → ∀𝑥(𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
40 | 32, 27, 39 | bnj1521 32831 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) → ∃𝑥((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥)) |
41 | | simp2 1136 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) → 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}) |
42 | 15, 6, 7, 4, 26, 1,
27 | bnj1279 32998 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}) = ∅) |
43 | 42 | 3adant1 1129 |
. . . . . . . 8
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}) = ∅) |
44 | 15, 6, 7, 4, 26, 1,
27, 43 | bnj1280 33000 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) |
45 | | eqid 2738 |
. . . . . . 7
⊢
〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 |
46 | | eqid 2738 |
. . . . . . 7
⊢ {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉))} |
47 | 15, 6, 7, 4, 26, 1,
27, 44, 8, 9, 45, 46 | bnj1296 33001 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔‘𝑥) = (ℎ‘𝑥)) |
48 | 26 | bnj1538 32835 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} → (𝑔‘𝑥) ≠ (ℎ‘𝑥)) |
49 | 48 | necon2bi 2974 |
. . . . . 6
⊢ ((𝑔‘𝑥) = (ℎ‘𝑥) → ¬ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}) |
50 | 47, 49 | syl 17 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ¬ 𝑦𝑅𝑥) → ¬ 𝑥 ∈ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)}) |
51 | 40, 41, 50 | bnj1304 32799 |
. . . 4
⊢ ¬
(𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) |
52 | | df-bnj17 32666 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
53 | 51, 52 | mtbi 322 |
. . 3
⊢ ¬
((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) |
54 | 53 | imnani 401 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → ¬ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) |
55 | | nne 2947 |
. 2
⊢ (¬
(𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷) ↔ (𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷)) |
56 | 54, 55 | sylib 217 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷)) |