Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1311 Structured version   Visualization version   GIF version

Theorem bnj1311 33004
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1311.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1311.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1311.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1311.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1311 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓,𝑔   𝐵,,𝑓   𝐷,𝑑,𝑥   𝐺,𝑑,𝑓,𝑔   ,𝐺,𝑑   𝑅,𝑑,𝑓,𝑥   𝑔,𝑌   ,𝑌   𝑥,𝑔   𝑥,
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑓,𝑔,)   𝑅(𝑔,)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1311
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 260 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
21bnj1232 32783 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑅 FrSe 𝐴)
3 ssrab2 4013 . . . . . . . 8 {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐷
4 bnj1311.4 . . . . . . . . 9 𝐷 = (dom 𝑔 ∩ dom )
51bnj1235 32784 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑔𝐶)
6 bnj1311.2 . . . . . . . . . . . 12 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 bnj1311.3 . . . . . . . . . . . 12 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
8 eqid 2738 . . . . . . . . . . . 12 𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
9 eqid 2738 . . . . . . . . . . . 12 {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
106, 7, 8, 9bnj1234 32993 . . . . . . . . . . 11 𝐶 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
115, 10eleqtrdi 2849 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))})
12 abid 2719 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} ↔ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
1312bnj1238 32786 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑𝐵 𝑔 Fn 𝑑)
1413bnj1196 32774 . . . . . . . . . . . 12 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑(𝑑𝐵𝑔 Fn 𝑑))
15 bnj1311.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1615abeq2i 2875 . . . . . . . . . . . . . 14 (𝑑𝐵 ↔ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1716simplbi 498 . . . . . . . . . . . . 13 (𝑑𝐵𝑑𝐴)
18 fndm 6536 . . . . . . . . . . . . 13 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
1917, 18bnj1241 32787 . . . . . . . . . . . 12 ((𝑑𝐵𝑔 Fn 𝑑) → dom 𝑔𝐴)
2014, 19bnj593 32725 . . . . . . . . . . 11 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑dom 𝑔𝐴)
2120bnj937 32751 . . . . . . . . . 10 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → dom 𝑔𝐴)
22 ssinss1 4171 . . . . . . . . . 10 (dom 𝑔𝐴 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2311, 21, 223syl 18 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
244, 23eqsstrid 3969 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝐷𝐴)
253, 24sstrid 3932 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐴)
26 eqid 2738 . . . . . . . 8 {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
27 biid 260 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥))
2815, 6, 7, 4, 26, 1, 27bnj1253 32997 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅)
29 nfrab1 3317 . . . . . . . . 9 𝑥{𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
3029nfcrii 2899 . . . . . . . 8 (𝑧 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} → ∀𝑥 𝑧 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
3130bnj1228 32991 . . . . . . 7 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐴 ∧ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅) → ∃𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥)
322, 25, 28, 31syl3anc 1370 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∃𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥)
33 ax-5 1913 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥 𝑅 FrSe 𝐴)
3415bnj1309 33002 . . . . . . . . 9 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
357, 34bnj1307 33003 . . . . . . . 8 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
3635hblem 2870 . . . . . . 7 (𝑔𝐶 → ∀𝑥 𝑔𝐶)
3735hblem 2870 . . . . . . 7 (𝐶 → ∀𝑥 𝐶)
38 ax-5 1913 . . . . . . 7 ((𝑔𝐷) ≠ (𝐷) → ∀𝑥(𝑔𝐷) ≠ (𝐷))
3933, 36, 37, 38bnj982 32758 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∀𝑥(𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
4032, 27, 39bnj1521 32831 . . . . 5 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∃𝑥((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥))
41 simp2 1136 . . . . 5 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
4215, 6, 7, 4, 26, 1, 27bnj1279 32998 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}) = ∅)
43423adant1 1129 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}) = ∅)
4415, 6, 7, 4, 26, 1, 27, 43bnj1280 33000 . . . . . . 7 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
45 eqid 2738 . . . . . . 7 𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
46 eqid 2738 . . . . . . 7 { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
4715, 6, 7, 4, 26, 1, 27, 44, 8, 9, 45, 46bnj1296 33001 . . . . . 6 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔𝑥) = (𝑥))
4826bnj1538 32835 . . . . . . 7 (𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} → (𝑔𝑥) ≠ (𝑥))
4948necon2bi 2974 . . . . . 6 ((𝑔𝑥) = (𝑥) → ¬ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
5047, 49syl 17 . . . . 5 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ¬ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
5140, 41, 50bnj1304 32799 . . . 4 ¬ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷))
52 df-bnj17 32666 . . . 4 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) ∧ (𝑔𝐷) ≠ (𝐷)))
5351, 52mtbi 322 . . 3 ¬ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) ∧ (𝑔𝐷) ≠ (𝐷))
5453imnani 401 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → ¬ (𝑔𝐷) ≠ (𝐷))
55 nne 2947 . 2 (¬ (𝑔𝐷) ≠ (𝐷) ↔ (𝑔𝐷) = (𝐷))
5654, 55sylib 217 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  c0 4256  cop 4567   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433  w-bnj17 32665   predc-bnj14 32667   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674  df-bnj19 32676
This theorem is referenced by:  bnj1326  33006  bnj60  33042
  Copyright terms: Public domain W3C validator