Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1311 Structured version   Visualization version   GIF version

Theorem bnj1311 35021
Description: Technical lemma for bnj60 35059. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1311.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1311.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1311.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1311.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1311 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓,𝑔   𝐵,,𝑓   𝐷,𝑑,𝑥   𝐺,𝑑,𝑓,𝑔   ,𝐺,𝑑   𝑅,𝑑,𝑓,𝑥   𝑔,𝑌   ,𝑌   𝑥,𝑔   𝑥,
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑓,𝑔,)   𝑅(𝑔,)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1311
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
21bnj1232 34800 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑅 FrSe 𝐴)
3 ssrab2 4046 . . . . . . . 8 {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐷
4 bnj1311.4 . . . . . . . . 9 𝐷 = (dom 𝑔 ∩ dom )
51bnj1235 34801 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑔𝐶)
6 bnj1311.2 . . . . . . . . . . . 12 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 bnj1311.3 . . . . . . . . . . . 12 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
8 eqid 2730 . . . . . . . . . . . 12 𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
9 eqid 2730 . . . . . . . . . . . 12 {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
106, 7, 8, 9bnj1234 35010 . . . . . . . . . . 11 𝐶 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
115, 10eleqtrdi 2839 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))})
12 abid 2712 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} ↔ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
1312bnj1238 34803 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑𝐵 𝑔 Fn 𝑑)
1413bnj1196 34791 . . . . . . . . . . . 12 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑(𝑑𝐵𝑔 Fn 𝑑))
15 bnj1311.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1615eqabri 2872 . . . . . . . . . . . . . 14 (𝑑𝐵 ↔ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1716simplbi 497 . . . . . . . . . . . . 13 (𝑑𝐵𝑑𝐴)
18 fndm 6624 . . . . . . . . . . . . 13 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
1917, 18bnj1241 34804 . . . . . . . . . . . 12 ((𝑑𝐵𝑔 Fn 𝑑) → dom 𝑔𝐴)
2014, 19bnj593 34742 . . . . . . . . . . 11 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑dom 𝑔𝐴)
2120bnj937 34768 . . . . . . . . . 10 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → dom 𝑔𝐴)
22 ssinss1 4212 . . . . . . . . . 10 (dom 𝑔𝐴 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2311, 21, 223syl 18 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
244, 23eqsstrid 3988 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝐷𝐴)
253, 24sstrid 3961 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐴)
26 eqid 2730 . . . . . . . 8 {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
27 biid 261 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥))
2815, 6, 7, 4, 26, 1, 27bnj1253 35014 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅)
29 nfrab1 3429 . . . . . . . . 9 𝑥{𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
3029nfcrii 2887 . . . . . . . 8 (𝑧 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} → ∀𝑥 𝑧 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
3130bnj1228 35008 . . . . . . 7 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐴 ∧ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅) → ∃𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥)
322, 25, 28, 31syl3anc 1373 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∃𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥)
33 ax-5 1910 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥 𝑅 FrSe 𝐴)
3415bnj1309 35019 . . . . . . . . 9 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
357, 34bnj1307 35020 . . . . . . . 8 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
3635hblem 2860 . . . . . . 7 (𝑔𝐶 → ∀𝑥 𝑔𝐶)
3735hblem 2860 . . . . . . 7 (𝐶 → ∀𝑥 𝐶)
38 ax-5 1910 . . . . . . 7 ((𝑔𝐷) ≠ (𝐷) → ∀𝑥(𝑔𝐷) ≠ (𝐷))
3933, 36, 37, 38bnj982 34775 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∀𝑥(𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
4032, 27, 39bnj1521 34848 . . . . 5 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∃𝑥((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥))
41 simp2 1137 . . . . 5 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
4215, 6, 7, 4, 26, 1, 27bnj1279 35015 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}) = ∅)
43423adant1 1130 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}) = ∅)
4415, 6, 7, 4, 26, 1, 27, 43bnj1280 35017 . . . . . . 7 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
45 eqid 2730 . . . . . . 7 𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
46 eqid 2730 . . . . . . 7 { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
4715, 6, 7, 4, 26, 1, 27, 44, 8, 9, 45, 46bnj1296 35018 . . . . . 6 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔𝑥) = (𝑥))
4826bnj1538 34852 . . . . . . 7 (𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} → (𝑔𝑥) ≠ (𝑥))
4948necon2bi 2956 . . . . . 6 ((𝑔𝑥) = (𝑥) → ¬ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
5047, 49syl 17 . . . . 5 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ¬ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
5140, 41, 50bnj1304 34816 . . . 4 ¬ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷))
52 df-bnj17 34684 . . . 4 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) ∧ (𝑔𝐷) ≠ (𝐷)))
5351, 52mtbi 322 . . 3 ¬ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) ∧ (𝑔𝐷) ≠ (𝐷))
5453imnani 400 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → ¬ (𝑔𝐷) ≠ (𝐷))
55 nne 2930 . 2 (¬ (𝑔𝐷) ≠ (𝐷) ↔ (𝑔𝐷) = (𝐷))
5654, 55sylib 218 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  cin 3916  wss 3917  c0 4299  cop 4598   class class class wbr 5110  dom cdm 5641  cres 5643   Fn wfn 6509  cfv 6514  w-bnj17 34683   predc-bnj14 34685   FrSe w-bnj15 34689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-bnj17 34684  df-bnj14 34686  df-bnj13 34688  df-bnj15 34690  df-bnj18 34692  df-bnj19 34694
This theorem is referenced by:  bnj1326  35023  bnj60  35059
  Copyright terms: Public domain W3C validator