Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1241 Structured version   Visualization version   GIF version

Theorem bnj1241 32523
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1241.1 (𝜑𝐴𝐵)
bnj1241.2 (𝜓𝐶 = 𝐴)
Assertion
Ref Expression
bnj1241 ((𝜑𝜓) → 𝐶𝐵)

Proof of Theorem bnj1241
StepHypRef Expression
1 bnj1241.2 . . . 4 (𝜓𝐶 = 𝐴)
21eqcomd 2744 . . 3 (𝜓𝐴 = 𝐶)
32adantl 485 . 2 ((𝜑𝜓) → 𝐴 = 𝐶)
4 bnj1241.1 . . 3 (𝜑𝐴𝐵)
54adantr 484 . 2 ((𝜑𝜓) → 𝐴𝐵)
63, 5eqsstrrd 3954 1 ((𝜑𝜓) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wss 3880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3422  df-in 3887  df-ss 3897
This theorem is referenced by:  bnj1245  32730  bnj1311  32740
  Copyright terms: Public domain W3C validator