|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1241 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1241.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| bnj1241.2 | ⊢ (𝜓 → 𝐶 = 𝐴) | 
| Ref | Expression | 
|---|---|
| bnj1241 | ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1241.2 | . . . 4 ⊢ (𝜓 → 𝐶 = 𝐴) | |
| 2 | 1 | eqcomd 2742 | . . 3 ⊢ (𝜓 → 𝐴 = 𝐶) | 
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | 
| 4 | bnj1241.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐵) | 
| 6 | 3, 5 | eqsstrrd 4018 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ss 3967 | 
| This theorem is referenced by: bnj1245 35029 bnj1311 35039 | 
| Copyright terms: Public domain | W3C validator |