![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1256 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 35030. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1256.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1256.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1256.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1256.4 | ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
bnj1256.5 | ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
bnj1256.6 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
bnj1256.7 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
Ref | Expression |
---|---|
bnj1256 | ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1256.6 | . 2 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) | |
2 | abid 2721 | . . . 4 ⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} ↔ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))) | |
3 | 2 | bnj1238 34774 | . . 3 ⊢ (𝑔 ∈ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
4 | bnj1256.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
5 | bnj1256.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
6 | eqid 2740 | . . . 4 ⊢ 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
7 | eqid 2740 | . . . 4 ⊢ {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} | |
8 | 4, 5, 6, 7 | bnj1234 34981 | . . 3 ⊢ 𝐶 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉))} |
9 | 3, 8 | eleq2s 2862 | . 2 ⊢ (𝑔 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
10 | 1, 9 | bnj770 34731 | 1 ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∩ cin 3975 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 dom cdm 5695 ↾ cres 5697 Fn wfn 6563 ‘cfv 6568 ∧ w-bnj17 34654 predc-bnj14 34656 FrSe w-bnj15 34660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-res 5707 df-iota 6520 df-fun 6570 df-fn 6571 df-fv 6576 df-bnj17 34655 |
This theorem is referenced by: bnj1253 34985 bnj1286 34987 bnj1280 34988 |
Copyright terms: Public domain | W3C validator |