Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1322 Structured version   Visualization version   GIF version

Theorem bnj1322 34299
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1322 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)

Proof of Theorem bnj1322
StepHypRef Expression
1 eqimss 4040 . 2 (𝐴 = 𝐵𝐴𝐵)
2 df-ss 3965 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 217 1 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3947  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955  df-ss 3965
This theorem is referenced by:  bnj1321  34504
  Copyright terms: Public domain W3C validator