Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1322 Structured version   Visualization version   GIF version

Theorem bnj1322 34815
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1322 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)

Proof of Theorem bnj1322
StepHypRef Expression
1 eqimss 4054 . 2 (𝐴 = 𝐵𝐴𝐵)
2 dfss2 3981 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 218 1 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3962  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-in 3970  df-ss 3980
This theorem is referenced by:  bnj1321  35020
  Copyright terms: Public domain W3C validator