![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1317 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1317.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
bnj1317 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1317.1 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | hbab1 2711 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | hbxfreq 2856 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 |
This theorem is referenced by: bnj1014 34725 bnj1145 34757 bnj1384 34796 bnj1398 34798 bnj1448 34811 bnj1450 34814 bnj1466 34817 bnj1463 34819 bnj1491 34821 bnj1497 34824 bnj1498 34825 bnj1520 34830 bnj1501 34831 |
Copyright terms: Public domain | W3C validator |