Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1317 Structured version   Visualization version   GIF version

Theorem bnj1317 34814
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1317.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1317 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bnj1317
StepHypRef Expression
1 bnj1317.1 . 2 𝐴 = {𝑥𝜑}
2 hbab1 2721 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2hbxfreq 2870 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814
This theorem is referenced by:  bnj1014  34954  bnj1145  34986  bnj1384  35025  bnj1398  35027  bnj1448  35040  bnj1450  35043  bnj1466  35046  bnj1463  35048  bnj1491  35050  bnj1497  35053  bnj1498  35054  bnj1520  35059  bnj1501  35060
  Copyright terms: Public domain W3C validator