Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1317 Structured version   Visualization version   GIF version

Theorem bnj1317 32801
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1317.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1317 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bnj1317
StepHypRef Expression
1 bnj1317.1 . 2 𝐴 = {𝑥𝜑}
2 hbab1 2724 . 2 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2hbxfreq 2869 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  bnj1014  32941  bnj1145  32973  bnj1384  33012  bnj1398  33014  bnj1448  33027  bnj1450  33030  bnj1466  33033  bnj1463  33035  bnj1491  33037  bnj1497  33040  bnj1498  33041  bnj1520  33046  bnj1501  33047
  Copyright terms: Public domain W3C validator