Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1422 Structured version   Visualization version   GIF version

Theorem bnj1422 32817
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1422.1 (𝜑 → Fun 𝐴)
bnj1422.2 (𝜑 → dom 𝐴 = 𝐵)
Assertion
Ref Expression
bnj1422 (𝜑𝐴 Fn 𝐵)

Proof of Theorem bnj1422
StepHypRef Expression
1 bnj1422.1 . 2 (𝜑 → Fun 𝐴)
2 bnj1422.2 . 2 (𝜑 → dom 𝐴 = 𝐵)
3 df-fn 6436 . 2 (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
41, 2, 3sylanbrc 583 1 (𝜑𝐴 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  dom cdm 5589  Fun wfun 6427   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fn 6436
This theorem is referenced by:  bnj150  32856  bnj535  32870  bnj1312  33038  bnj60  33042
  Copyright terms: Public domain W3C validator