Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1424 Structured version   Visualization version   GIF version

Theorem bnj1424 32818
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1424.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj1424 (𝐷𝐴 → (𝐷𝐵𝐷𝐶))

Proof of Theorem bnj1424
StepHypRef Expression
1 bnj1424.1 . . 3 𝐴 = (𝐵𝐶)
21bnj1138 32768 . 2 (𝐷𝐴 ↔ (𝐷𝐵𝐷𝐶))
32biimpi 215 1 (𝐷𝐴 → (𝐷𝐵𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1539  wcel 2106  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892
This theorem is referenced by:  bnj1423  33031  bnj1452  33032
  Copyright terms: Public domain W3C validator