Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1424 Structured version   Visualization version   GIF version

Theorem bnj1424 34821
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1424.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj1424 (𝐷𝐴 → (𝐷𝐵𝐷𝐶))

Proof of Theorem bnj1424
StepHypRef Expression
1 bnj1424.1 . . 3 𝐴 = (𝐵𝐶)
21bnj1138 34771 . 2 (𝐷𝐴 ↔ (𝐷𝐵𝐷𝐶))
32biimpi 216 1 (𝐷𝐴 → (𝐷𝐵𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  cun 3909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916
This theorem is referenced by:  bnj1423  35034  bnj1452  35035
  Copyright terms: Public domain W3C validator