Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1424 Structured version   Visualization version   GIF version

Theorem bnj1424 32718
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1424.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj1424 (𝐷𝐴 → (𝐷𝐵𝐷𝐶))

Proof of Theorem bnj1424
StepHypRef Expression
1 bnj1424.1 . . 3 𝐴 = (𝐵𝐶)
21bnj1138 32668 . 2 (𝐷𝐴 ↔ (𝐷𝐵𝐷𝐶))
32biimpi 215 1 (𝐷𝐴 → (𝐷𝐵𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888
This theorem is referenced by:  bnj1423  32931  bnj1452  32932
  Copyright terms: Public domain W3C validator