Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanbrc | Structured version Visualization version GIF version |
Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sylanbrc.1 | ⊢ (𝜑 → 𝜓) |
sylanbrc.2 | ⊢ (𝜑 → 𝜒) |
sylanbrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanbrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | sylanbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | sylanbrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜑 → 𝜃) |
Copyright terms: Public domain | W3C validator |