Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1405 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1405.1 | ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
bnj1405 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1405.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) | |
2 | eliun 4887 | . 2 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3071 ∪ ciun 4883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-iun 4885 |
This theorem is referenced by: bnj1408 32536 bnj1450 32550 bnj1501 32567 |
Copyright terms: Public domain | W3C validator |