Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1405 Structured version   Visualization version   GIF version

Theorem bnj1405 34828
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1405.1 (𝜑𝑋 𝑦𝐴 𝐵)
Assertion
Ref Expression
bnj1405 (𝜑 → ∃𝑦𝐴 𝑋𝐵)
Distinct variable group:   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem bnj1405
StepHypRef Expression
1 bnj1405.1 . 2 (𝜑𝑋 𝑦𝐴 𝐵)
2 eliun 4999 . 2 (𝑋 𝑦𝐴 𝐵 ↔ ∃𝑦𝐴 𝑋𝐵)
31, 2sylib 218 1 (𝜑 → ∃𝑦𝐴 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wrex 3067   ciun 4995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rex 3068  df-v 3479  df-iun 4997
This theorem is referenced by:  bnj1408  35028  bnj1450  35042  bnj1501  35059
  Copyright terms: Public domain W3C validator