Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1405 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1405.1 | ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
bnj1405 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1405.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) | |
2 | eliun 4933 | . 2 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3066 ∪ ciun 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-iun 4931 |
This theorem is referenced by: bnj1408 32995 bnj1450 33009 bnj1501 33026 |
Copyright terms: Public domain | W3C validator |