Proof of Theorem bnj150
Step | Hyp | Ref
| Expression |
1 | | bnj150.8 |
. . . 4
⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
2 | 1 | bnj95 32844 |
. . 3
⊢ 𝐹 ∈ V |
3 | | sbceq1a 3727 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝜁′ ↔ [𝐹 / 𝑓]𝜁′)) |
4 | | bnj150.11 |
. . . 4
⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
5 | 3, 4 | bitr4di 289 |
. . 3
⊢ (𝑓 = 𝐹 → (𝜁′ ↔ 𝜁″)) |
6 | | 0ex 5231 |
. . . . . . . . 9
⊢ ∅
∈ V |
7 | | bnj93 32843 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) |
8 | | funsng 6485 |
. . . . . . . . 9
⊢ ((∅
∈ V ∧ pred(𝑥,
𝐴, 𝑅) ∈ V) → Fun {〈∅,
pred(𝑥, 𝐴, 𝑅)〉}) |
9 | 6, 7, 8 | sylancr 587 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
10 | 1 | funeqi 6455 |
. . . . . . . 8
⊢ (Fun
𝐹 ↔ Fun
{〈∅, pred(𝑥,
𝐴, 𝑅)〉}) |
11 | 9, 10 | sylibr 233 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
12 | 1 | bnj96 32845 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1o) |
13 | 11, 12 | bnj1422 32817 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn 1o) |
14 | 1 | bnj97 32846 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
15 | | bnj150.1 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
16 | | bnj150.4 |
. . . . . . . 8
⊢ (𝜑′ ↔
[1o / 𝑛]𝜑) |
17 | | bnj150.9 |
. . . . . . . 8
⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
18 | 15, 16, 17, 1 | bnj125 32852 |
. . . . . . 7
⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
19 | 14, 18 | sylibr 233 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝜑″) |
20 | 13, 19 | jca 512 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1o ∧ 𝜑″)) |
21 | | bnj98 32847 |
. . . . . 6
⊢
∀𝑖 ∈
ω (suc 𝑖 ∈
1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
22 | | bnj150.2 |
. . . . . . 7
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
23 | | bnj150.5 |
. . . . . . 7
⊢ (𝜓′ ↔
[1o / 𝑛]𝜓) |
24 | | bnj150.10 |
. . . . . . 7
⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
25 | 22, 23, 24, 1 | bnj126 32853 |
. . . . . 6
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o →
(𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
26 | 21, 25 | mpbir 230 |
. . . . 5
⊢ 𝜓″ |
27 | | df-3an 1088 |
. . . . 5
⊢ ((𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″) ↔ ((𝐹 Fn 1o ∧ 𝜑″) ∧ 𝜓″)) |
28 | 20, 26, 27 | sylanblrc 590 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″)) |
29 | | bnj150.3 |
. . . . . 6
⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
30 | | bnj150.7 |
. . . . . 6
⊢ (𝜁′ ↔
[1o / 𝑛]𝜁) |
31 | 29, 30, 16, 23 | bnj121 32850 |
. . . . 5
⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
32 | 1, 17, 24, 4, 31 | bnj124 32851 |
. . . 4
⊢ (𝜁″ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1o ∧ 𝜑″ ∧ 𝜓″))) |
33 | 28, 32 | mpbir 230 |
. . 3
⊢ 𝜁″ |
34 | 2, 5, 33 | ceqsexv2d 3481 |
. 2
⊢
∃𝑓𝜁′ |
35 | | bnj150.6 |
. . . 4
⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
36 | | 19.37v 1995 |
. . . 4
⊢
(∃𝑓((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
37 | 35, 36 | bitr4i 277 |
. . 3
⊢ (𝜃0 ↔ ∃𝑓((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
38 | 37, 31 | bnj133 32706 |
. 2
⊢ (𝜃0 ↔ ∃𝑓𝜁′) |
39 | 34, 38 | mpbir 230 |
1
⊢ 𝜃0 |