Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj150 Structured version   Visualization version   GIF version

Theorem bnj150 34869
Description: Technical lemma for bnj151 34870. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj150.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj150.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj150.3 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj150.4 (𝜑′[1o / 𝑛]𝜑)
bnj150.5 (𝜓′[1o / 𝑛]𝜓)
bnj150.6 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj150.7 (𝜁′[1o / 𝑛]𝜁)
bnj150.8 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj150.9 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj150.10 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj150.11 (𝜁″[𝐹 / 𝑓]𝜁′)
Assertion
Ref Expression
bnj150 𝜃0
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑛,𝑥   𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐹(𝑥,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜑″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜃0(𝑥,𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj150
StepHypRef Expression
1 bnj150.8 . . . 4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
21bnj95 34857 . . 3 𝐹 ∈ V
3 sbceq1a 3802 . . . 4 (𝑓 = 𝐹 → (𝜁′[𝐹 / 𝑓]𝜁′))
4 bnj150.11 . . . 4 (𝜁″[𝐹 / 𝑓]𝜁′)
53, 4bitr4di 289 . . 3 (𝑓 = 𝐹 → (𝜁′𝜁″))
6 0ex 5313 . . . . . . . . 9 ∅ ∈ V
7 bnj93 34856 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
8 funsng 6619 . . . . . . . . 9 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
96, 7, 8sylancr 587 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
101funeqi 6589 . . . . . . . 8 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
119, 10sylibr 234 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
121bnj96 34858 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
1311, 12bnj1422 34830 . . . . . 6 ((𝑅 FrSe 𝐴𝑥𝐴) → 𝐹 Fn 1o)
141bnj97 34859 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
15 bnj150.1 . . . . . . . 8 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
16 bnj150.4 . . . . . . . 8 (𝜑′[1o / 𝑛]𝜑)
17 bnj150.9 . . . . . . . 8 (𝜑″[𝐹 / 𝑓]𝜑′)
1815, 16, 17, 1bnj125 34865 . . . . . . 7 (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
1914, 18sylibr 234 . . . . . 6 ((𝑅 FrSe 𝐴𝑥𝐴) → 𝜑″)
2013, 19jca 511 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″))
21 bnj98 34860 . . . . . 6 𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
22 bnj150.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
23 bnj150.5 . . . . . . 7 (𝜓′[1o / 𝑛]𝜓)
24 bnj150.10 . . . . . . 7 (𝜓″[𝐹 / 𝑓]𝜓′)
2522, 23, 24, 1bnj126 34866 . . . . . 6 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
2621, 25mpbir 231 . . . . 5 𝜓″
27 df-3an 1088 . . . . 5 ((𝐹 Fn 1o𝜑″𝜓″) ↔ ((𝐹 Fn 1o𝜑″) ∧ 𝜓″))
2820, 26, 27sylanblrc 590 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″))
29 bnj150.3 . . . . . 6 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
30 bnj150.7 . . . . . 6 (𝜁′[1o / 𝑛]𝜁)
3129, 30, 16, 23bnj121 34863 . . . . 5 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
321, 17, 24, 4, 31bnj124 34864 . . . 4 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
3328, 32mpbir 231 . . 3 𝜁″
342, 5, 33ceqsexv2d 3533 . 2 𝑓𝜁′
35 bnj150.6 . . . 4 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
36 19.37v 1989 . . . 4 (∃𝑓((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
3735, 36bitr4i 278 . . 3 (𝜃0 ↔ ∃𝑓((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
3837, 31bnj133 34720 . 2 (𝜃0 ↔ ∃𝑓𝜁′)
3934, 38mpbir 231 1 𝜃0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wral 3059  Vcvv 3478  [wsbc 3791  c0 4339  {csn 4631  cop 4637   ciun 4996  suc csuc 6388  Fun wfun 6557   Fn wfn 6558  cfv 6563  ωcom 7887  1oc1o 8498   predc-bnj14 34681   FrSe w-bnj15 34685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-1o 8505  df-bnj13 34684  df-bnj15 34686
This theorem is referenced by:  bnj151  34870
  Copyright terms: Public domain W3C validator