| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj60 | Structured version Visualization version GIF version | ||
| Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj60.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj60.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj60.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj60.4 | ⊢ 𝐹 = ∪ 𝐶 |
| Ref | Expression |
|---|---|
| bnj60 | ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj60.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 2 | bnj60.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 3 | bnj60.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 4 | 1, 2, 3 | bnj1497 35043 | . . . 4 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (dom 𝑔 ∩ dom ℎ) = (dom 𝑔 ∩ dom ℎ) | |
| 6 | 1, 2, 3, 5 | bnj1311 35007 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
| 7 | 6 | 3expia 1121 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → (ℎ ∈ 𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) |
| 8 | 7 | ralrimiv 3120 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
| 9 | 8 | ralrimiva 3121 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
| 10 | biid 261 | . . . . 5 ⊢ (∀𝑔 ∈ 𝐶 Fun 𝑔 ↔ ∀𝑔 ∈ 𝐶 Fun 𝑔) | |
| 11 | biid 261 | . . . . 5 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) ↔ (∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) | |
| 12 | 10, 5, 11 | bnj1383 34814 | . . . 4 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) → Fun ∪ 𝐶) |
| 13 | 4, 9, 12 | sylancr 587 | . . 3 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐶) |
| 14 | bnj60.4 | . . . 4 ⊢ 𝐹 = ∪ 𝐶 | |
| 15 | 14 | funeqi 6503 | . . 3 ⊢ (Fun 𝐹 ↔ Fun ∪ 𝐶) |
| 16 | 13, 15 | sylibr 234 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun 𝐹) |
| 17 | 1, 2, 3, 14 | bnj1498 35044 | . 2 ⊢ (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴) |
| 18 | 16, 17 | bnj1422 34820 | 1 ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∩ cin 3902 ⊆ wss 3903 〈cop 4583 ∪ cuni 4858 dom cdm 5619 ↾ cres 5621 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 predc-bnj14 34671 FrSe w-bnj15 34675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-bnj17 34670 df-bnj14 34672 df-bnj13 34674 df-bnj15 34676 df-bnj18 34678 df-bnj19 34680 |
| This theorem is referenced by: bnj1501 35050 bnj1523 35054 |
| Copyright terms: Public domain | W3C validator |