![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj60 | Structured version Visualization version GIF version |
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj60.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj60.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj60.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj60.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj60 | ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj60.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj60.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj60.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | 1, 2, 3 | bnj1497 35052 | . . . 4 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
5 | eqid 2734 | . . . . . . . 8 ⊢ (dom 𝑔 ∩ dom ℎ) = (dom 𝑔 ∩ dom ℎ) | |
6 | 1, 2, 3, 5 | bnj1311 35016 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
7 | 6 | 3expia 1120 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → (ℎ ∈ 𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) |
8 | 7 | ralrimiv 3142 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
9 | 8 | ralrimiva 3143 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
10 | biid 261 | . . . . 5 ⊢ (∀𝑔 ∈ 𝐶 Fun 𝑔 ↔ ∀𝑔 ∈ 𝐶 Fun 𝑔) | |
11 | biid 261 | . . . . 5 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) ↔ (∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) | |
12 | 10, 5, 11 | bnj1383 34823 | . . . 4 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) → Fun ∪ 𝐶) |
13 | 4, 9, 12 | sylancr 587 | . . 3 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐶) |
14 | bnj60.4 | . . . 4 ⊢ 𝐹 = ∪ 𝐶 | |
15 | 14 | funeqi 6588 | . . 3 ⊢ (Fun 𝐹 ↔ Fun ∪ 𝐶) |
16 | 13, 15 | sylibr 234 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun 𝐹) |
17 | 1, 2, 3, 14 | bnj1498 35053 | . 2 ⊢ (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴) |
18 | 16, 17 | bnj1422 34829 | 1 ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 ∀wral 3058 ∃wrex 3067 ∩ cin 3961 ⊆ wss 3962 〈cop 4636 ∪ cuni 4911 dom cdm 5688 ↾ cres 5690 Fun wfun 6556 Fn wfn 6557 ‘cfv 6562 predc-bnj14 34680 FrSe w-bnj15 34684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-reg 9629 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-om 7887 df-1o 8504 df-bnj17 34679 df-bnj14 34681 df-bnj13 34683 df-bnj15 34685 df-bnj18 34687 df-bnj19 34689 |
This theorem is referenced by: bnj1501 35059 bnj1523 35063 |
Copyright terms: Public domain | W3C validator |