Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj60 Structured version   Visualization version   GIF version

Theorem bnj60 33042
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj60.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj60.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj60.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj60.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj60 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj60
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj60.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj60.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj60.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
41, 2, 3bnj1497 33040 . . . 4 𝑔𝐶 Fun 𝑔
5 eqid 2738 . . . . . . . 8 (dom 𝑔 ∩ dom ) = (dom 𝑔 ∩ dom )
61, 2, 3, 5bnj1311 33004 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
763expia 1120 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶) → (𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))))
87ralrimiv 3102 . . . . 5 ((𝑅 FrSe 𝐴𝑔𝐶) → ∀𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
98ralrimiva 3103 . . . 4 (𝑅 FrSe 𝐴 → ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
10 biid 260 . . . . 5 (∀𝑔𝐶 Fun 𝑔 ↔ ∀𝑔𝐶 Fun 𝑔)
11 biid 260 . . . . 5 ((∀𝑔𝐶 Fun 𝑔 ∧ ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))) ↔ (∀𝑔𝐶 Fun 𝑔 ∧ ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))))
1210, 5, 11bnj1383 32811 . . . 4 ((∀𝑔𝐶 Fun 𝑔 ∧ ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))) → Fun 𝐶)
134, 9, 12sylancr 587 . . 3 (𝑅 FrSe 𝐴 → Fun 𝐶)
14 bnj60.4 . . . 4 𝐹 = 𝐶
1514funeqi 6455 . . 3 (Fun 𝐹 ↔ Fun 𝐶)
1613, 15sylibr 233 . 2 (𝑅 FrSe 𝐴 → Fun 𝐹)
171, 2, 3, 14bnj1498 33041 . 2 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
1816, 17bnj1422 32817 1 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  cin 3886  wss 3887  cop 4567   cuni 4839  dom cdm 5589  cres 5591  Fun wfun 6427   Fn wfn 6428  cfv 6433   predc-bnj14 32667   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674  df-bnj19 32676
This theorem is referenced by:  bnj1501  33047  bnj1523  33051
  Copyright terms: Public domain W3C validator