Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj60 | Structured version Visualization version GIF version |
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj60.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj60.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj60.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj60.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj60 | ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj60.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj60.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj60.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | 1, 2, 3 | bnj1497 33040 | . . . 4 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
5 | eqid 2738 | . . . . . . . 8 ⊢ (dom 𝑔 ∩ dom ℎ) = (dom 𝑔 ∩ dom ℎ) | |
6 | 1, 2, 3, 5 | bnj1311 33004 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
7 | 6 | 3expia 1120 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → (ℎ ∈ 𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) |
8 | 7 | ralrimiv 3102 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
9 | 8 | ralrimiva 3103 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
10 | biid 260 | . . . . 5 ⊢ (∀𝑔 ∈ 𝐶 Fun 𝑔 ↔ ∀𝑔 ∈ 𝐶 Fun 𝑔) | |
11 | biid 260 | . . . . 5 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) ↔ (∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) | |
12 | 10, 5, 11 | bnj1383 32811 | . . . 4 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) → Fun ∪ 𝐶) |
13 | 4, 9, 12 | sylancr 587 | . . 3 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐶) |
14 | bnj60.4 | . . . 4 ⊢ 𝐹 = ∪ 𝐶 | |
15 | 14 | funeqi 6455 | . . 3 ⊢ (Fun 𝐹 ↔ Fun ∪ 𝐶) |
16 | 13, 15 | sylibr 233 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun 𝐹) |
17 | 1, 2, 3, 14 | bnj1498 33041 | . 2 ⊢ (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴) |
18 | 16, 17 | bnj1422 32817 | 1 ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 〈cop 4567 ∪ cuni 4839 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 predc-bnj14 32667 FrSe w-bnj15 32671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-bnj17 32666 df-bnj14 32668 df-bnj13 32670 df-bnj15 32672 df-bnj18 32674 df-bnj19 32676 |
This theorem is referenced by: bnj1501 33047 bnj1523 33051 |
Copyright terms: Public domain | W3C validator |