![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj60 | Structured version Visualization version GIF version |
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj60.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj60.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj60.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj60.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj60 | ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj60.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj60.2 | . . . . 5 ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
3 | bnj60.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | 1, 2, 3 | bnj1497 33729 | . . . 4 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
5 | eqid 2733 | . . . . . . . 8 ⊢ (dom 𝑔 ∩ dom ℎ) = (dom 𝑔 ∩ dom ℎ) | |
6 | 1, 2, 3, 5 | bnj1311 33693 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
7 | 6 | 3expia 1122 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → (ℎ ∈ 𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) |
8 | 7 | ralrimiv 3139 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
9 | 8 | ralrimiva 3140 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
10 | biid 261 | . . . . 5 ⊢ (∀𝑔 ∈ 𝐶 Fun 𝑔 ↔ ∀𝑔 ∈ 𝐶 Fun 𝑔) | |
11 | biid 261 | . . . . 5 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) ↔ (∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) | |
12 | 10, 5, 11 | bnj1383 33500 | . . . 4 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) → Fun ∪ 𝐶) |
13 | 4, 9, 12 | sylancr 588 | . . 3 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐶) |
14 | bnj60.4 | . . . 4 ⊢ 𝐹 = ∪ 𝐶 | |
15 | 14 | funeqi 6523 | . . 3 ⊢ (Fun 𝐹 ↔ Fun ∪ 𝐶) |
16 | 13, 15 | sylibr 233 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun 𝐹) |
17 | 1, 2, 3, 14 | bnj1498 33730 | . 2 ⊢ (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴) |
18 | 16, 17 | bnj1422 33506 | 1 ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3061 ∃wrex 3070 ∩ cin 3910 ⊆ wss 3911 ⟨cop 4593 ∪ cuni 4866 dom cdm 5634 ↾ cres 5636 Fun wfun 6491 Fn wfn 6492 ‘cfv 6497 predc-bnj14 33357 FrSe w-bnj15 33361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9533 ax-inf2 9582 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-om 7804 df-1o 8413 df-bnj17 33356 df-bnj14 33358 df-bnj13 33360 df-bnj15 33362 df-bnj18 33364 df-bnj19 33366 |
This theorem is referenced by: bnj1501 33736 bnj1523 33740 |
Copyright terms: Public domain | W3C validator |