Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1398 Structured version   Visualization version   GIF version

Theorem bnj1398 32914
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1398.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1398.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1398.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1398.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1398.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1398.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1398.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1398.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1398.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1398.10 𝑃 = 𝐻
bnj1398.11 (𝜃 ↔ (𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
bnj1398.12 (𝜂 ↔ (𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1398 (𝜒 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐶   𝑦,𝐷   𝑧,𝐻   𝑧,𝑃   𝑅,𝑓,𝑥,𝑦,𝑧   𝜒,𝑧   𝑓,𝑑,𝑥   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑑)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1398
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1398.11 . . . . 5 (𝜃 ↔ (𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
2 df-iun 4923 . . . . . . . . . 10 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = {𝑧 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))}
32bnj1436 32719 . . . . . . . . 9 (𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
41, 3simplbiim 504 . . . . . . . 8 (𝜃 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
5 bnj1398.12 . . . . . . . 8 (𝜂 ↔ (𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
6 bnj1398.7 . . . . . . . . . . . 12 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
7 nfv 1918 . . . . . . . . . . . . 13 𝑦𝜓
8 nfv 1918 . . . . . . . . . . . . 13 𝑦 𝑥𝐷
9 nfra1 3142 . . . . . . . . . . . . 13 𝑦𝑦𝐷 ¬ 𝑦𝑅𝑥
107, 8, 9nf3an 1905 . . . . . . . . . . . 12 𝑦(𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥)
116, 10nfxfr 1856 . . . . . . . . . . 11 𝑦𝜒
12 nfiu1 4955 . . . . . . . . . . . 12 𝑦 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))
1312nfcri 2893 . . . . . . . . . . 11 𝑦 𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))
1411, 13nfan 1903 . . . . . . . . . 10 𝑦(𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
151, 14nfxfr 1856 . . . . . . . . 9 𝑦𝜃
1615nf5ri 2191 . . . . . . . 8 (𝜃 → ∀𝑦𝜃)
174, 5, 16bnj1521 32731 . . . . . . 7 (𝜃 → ∃𝑦𝜂)
18 bnj1398.6 . . . . . . . . . . . . . . . . . . 19 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
19 nfv 1918 . . . . . . . . . . . . . . . . . . . 20 𝑓 𝑅 FrSe 𝐴
20 bnj1398.5 . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
21 nfe1 2149 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓𝑓𝜏
2221nfn 1861 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 ¬ ∃𝑓𝜏
23 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓𝐴
2422, 23nfrabw 3311 . . . . . . . . . . . . . . . . . . . . . 22 𝑓{𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2520, 24nfcxfr 2904 . . . . . . . . . . . . . . . . . . . . 21 𝑓𝐷
26 nfcv 2906 . . . . . . . . . . . . . . . . . . . . 21 𝑓
2725, 26nfne 3044 . . . . . . . . . . . . . . . . . . . 20 𝑓 𝐷 ≠ ∅
2819, 27nfan 1903 . . . . . . . . . . . . . . . . . . 19 𝑓(𝑅 FrSe 𝐴𝐷 ≠ ∅)
2918, 28nfxfr 1856 . . . . . . . . . . . . . . . . . 18 𝑓𝜓
3025nfcri 2893 . . . . . . . . . . . . . . . . . 18 𝑓 𝑥𝐷
31 nfv 1918 . . . . . . . . . . . . . . . . . . 19 𝑓 ¬ 𝑦𝑅𝑥
3225, 31nfralw 3149 . . . . . . . . . . . . . . . . . 18 𝑓𝑦𝐷 ¬ 𝑦𝑅𝑥
3329, 30, 32nf3an 1905 . . . . . . . . . . . . . . . . 17 𝑓(𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥)
346, 33nfxfr 1856 . . . . . . . . . . . . . . . 16 𝑓𝜒
35 nfv 1918 . . . . . . . . . . . . . . . 16 𝑓 𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))
3634, 35nfan 1903 . . . . . . . . . . . . . . 15 𝑓(𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
371, 36nfxfr 1856 . . . . . . . . . . . . . 14 𝑓𝜃
38 nfv 1918 . . . . . . . . . . . . . 14 𝑓 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)
39 nfv 1918 . . . . . . . . . . . . . 14 𝑓 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))
4037, 38, 39nf3an 1905 . . . . . . . . . . . . 13 𝑓(𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
415, 40nfxfr 1856 . . . . . . . . . . . 12 𝑓𝜂
4241nf5ri 2191 . . . . . . . . . . 11 (𝜂 → ∀𝑓𝜂)
431simplbi 497 . . . . . . . . . . . . 13 (𝜃𝜒)
445, 43bnj835 32639 . . . . . . . . . . . 12 (𝜂𝜒)
455simp2bi 1144 . . . . . . . . . . . 12 (𝜂𝑦 ∈ pred(𝑥, 𝐴, 𝑅))
46 bnj1398.1 . . . . . . . . . . . . . 14 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
47 bnj1398.2 . . . . . . . . . . . . . 14 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
48 bnj1398.3 . . . . . . . . . . . . . 14 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
49 bnj1398.4 . . . . . . . . . . . . . 14 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
50 bnj1398.8 . . . . . . . . . . . . . 14 (𝜏′[𝑦 / 𝑥]𝜏)
5146, 47, 48, 49, 20, 18, 6, 50bnj1388 32913 . . . . . . . . . . . . 13 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′)
52 rsp 3129 . . . . . . . . . . . . 13 (∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′ → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′))
5444, 45, 53sylc 65 . . . . . . . . . . 11 (𝜂 → ∃𝑓𝜏′)
5542, 54bnj596 32626 . . . . . . . . . 10 (𝜂 → ∃𝑓(𝜂𝜏′))
5646, 47, 48, 49, 50bnj1373 32910 . . . . . . . . . . . . . 14 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
5756simplbi 497 . . . . . . . . . . . . 13 (𝜏′𝑓𝐶)
5857adantl 481 . . . . . . . . . . . 12 ((𝜂𝜏′) → 𝑓𝐶)
5956simprbi 496 . . . . . . . . . . . . 13 (𝜏′ → dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
60 rspe 3232 . . . . . . . . . . . . 13 ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
6145, 59, 60syl2an 595 . . . . . . . . . . . 12 ((𝜂𝜏′) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
62 bnj1398.9 . . . . . . . . . . . . . 14 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
6362abeq2i 2874 . . . . . . . . . . . . 13 (𝑓𝐻 ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′)
6456rexbii 3177 . . . . . . . . . . . . 13 (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
65 r19.42v 3276 . . . . . . . . . . . . 13 (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
6663, 64, 653bitri 296 . . . . . . . . . . . 12 (𝑓𝐻 ↔ (𝑓𝐶 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
6758, 61, 66sylanbrc 582 . . . . . . . . . . 11 ((𝜂𝜏′) → 𝑓𝐻)
685simp3bi 1145 . . . . . . . . . . . . 13 (𝜂𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
6968adantr 480 . . . . . . . . . . . 12 ((𝜂𝜏′) → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
7059adantl 481 . . . . . . . . . . . 12 ((𝜂𝜏′) → dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
7169, 70eleqtrrd 2842 . . . . . . . . . . 11 ((𝜂𝜏′) → 𝑧 ∈ dom 𝑓)
7267, 71jca 511 . . . . . . . . . 10 ((𝜂𝜏′) → (𝑓𝐻𝑧 ∈ dom 𝑓))
7355, 72bnj593 32625 . . . . . . . . 9 (𝜂 → ∃𝑓(𝑓𝐻𝑧 ∈ dom 𝑓))
74 df-rex 3069 . . . . . . . . 9 (∃𝑓𝐻 𝑧 ∈ dom 𝑓 ↔ ∃𝑓(𝑓𝐻𝑧 ∈ dom 𝑓))
7573, 74sylibr 233 . . . . . . . 8 (𝜂 → ∃𝑓𝐻 𝑧 ∈ dom 𝑓)
76 bnj1398.10 . . . . . . . . . . . 12 𝑃 = 𝐻
7776dmeqi 5802 . . . . . . . . . . 11 dom 𝑃 = dom 𝐻
7862bnj1317 32701 . . . . . . . . . . . 12 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
7978bnj1400 32715 . . . . . . . . . . 11 dom 𝐻 = 𝑓𝐻 dom 𝑓
8077, 79eqtri 2766 . . . . . . . . . 10 dom 𝑃 = 𝑓𝐻 dom 𝑓
8180eleq2i 2830 . . . . . . . . 9 (𝑧 ∈ dom 𝑃𝑧 𝑓𝐻 dom 𝑓)
82 eliun 4925 . . . . . . . . 9 (𝑧 𝑓𝐻 dom 𝑓 ↔ ∃𝑓𝐻 𝑧 ∈ dom 𝑓)
8381, 82bitri 274 . . . . . . . 8 (𝑧 ∈ dom 𝑃 ↔ ∃𝑓𝐻 𝑧 ∈ dom 𝑓)
8475, 83sylibr 233 . . . . . . 7 (𝜂𝑧 ∈ dom 𝑃)
8517, 84bnj593 32625 . . . . . 6 (𝜃 → ∃𝑦 𝑧 ∈ dom 𝑃)
86 nfre1 3234 . . . . . . . . . . . 12 𝑦𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′
8786nfab 2912 . . . . . . . . . . 11 𝑦{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
8862, 87nfcxfr 2904 . . . . . . . . . 10 𝑦𝐻
8988nfuni 4843 . . . . . . . . 9 𝑦 𝐻
9076, 89nfcxfr 2904 . . . . . . . 8 𝑦𝑃
9190nfdm 5849 . . . . . . 7 𝑦dom 𝑃
9291nfcrii 2898 . . . . . 6 (𝑧 ∈ dom 𝑃 → ∀𝑦 𝑧 ∈ dom 𝑃)
9385, 92bnj1397 32714 . . . . 5 (𝜃𝑧 ∈ dom 𝑃)
941, 93sylbir 234 . . . 4 ((𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → 𝑧 ∈ dom 𝑃)
9594ex 412 . . 3 (𝜒 → (𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → 𝑧 ∈ dom 𝑃))
9695ssrdv 3923 . 2 (𝜒 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) ⊆ dom 𝑃)
97 simpr 484 . . . . . . 7 ((𝑓𝐻𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓)
9866simprbi 496 . . . . . . . 8 (𝑓𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
9998adantr 480 . . . . . . 7 ((𝑓𝐻𝑧 ∈ dom 𝑓) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
100 r19.42v 3276 . . . . . . . 8 (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑧 ∈ dom 𝑓 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
101 eleq2 2827 . . . . . . . . . 10 (dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → (𝑧 ∈ dom 𝑓𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
102101biimpac 478 . . . . . . . . 9 ((𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
103102reximi 3174 . . . . . . . 8 (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
104100, 103sylbir 234 . . . . . . 7 ((𝑧 ∈ dom 𝑓 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
10597, 99, 104syl2anc 583 . . . . . 6 ((𝑓𝐻𝑧 ∈ dom 𝑓) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
106105rexlimiva 3209 . . . . 5 (∃𝑓𝐻 𝑧 ∈ dom 𝑓 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
107 eliun 4925 . . . . 5 (𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
108106, 83, 1073imtr4i 291 . . . 4 (𝑧 ∈ dom 𝑃𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
109108ssriv 3921 . . 3 dom 𝑃 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))
110109a1i 11 . 2 (𝜒 → dom 𝑃 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
11196, 110eqssd 3934 1 (𝜒 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  [wsbc 3711  cun 3881  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  dom cdm 5580  cres 5582   Fn wfn 6413  cfv 6418   predc-bnj14 32567   FrSe w-bnj15 32571   trClc-bnj18 32573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-dm 5590  df-bnj14 32568  df-bnj18 32574
This theorem is referenced by:  bnj1415  32918
  Copyright terms: Public domain W3C validator