| Step | Hyp | Ref
| Expression |
| 1 | | bnj1398.11 |
. . . . 5
⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 2 | | df-iun 4993 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = {𝑧 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))} |
| 3 | 2 | bnj1436 34853 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 4 | 1, 3 | simplbiim 504 |
. . . . . . . 8
⊢ (𝜃 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 5 | | bnj1398.12 |
. . . . . . . 8
⊢ (𝜂 ↔ (𝜃 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 6 | | bnj1398.7 |
. . . . . . . . . . . 12
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| 7 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝜓 |
| 8 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝑥 ∈ 𝐷 |
| 9 | | nfra1 3284 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥 |
| 10 | 7, 8, 9 | nf3an 1901 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
| 11 | 6, 10 | nfxfr 1853 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝜒 |
| 12 | | nfiu1 5027 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
| 13 | 12 | nfcri 2897 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
| 14 | 11, 13 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 15 | 1, 14 | nfxfr 1853 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜃 |
| 16 | 15 | nf5ri 2195 |
. . . . . . . 8
⊢ (𝜃 → ∀𝑦𝜃) |
| 17 | 4, 5, 16 | bnj1521 34865 |
. . . . . . 7
⊢ (𝜃 → ∃𝑦𝜂) |
| 18 | | bnj1398.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| 19 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑓 𝑅 FrSe 𝐴 |
| 20 | | bnj1398.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| 21 | | nfe1 2150 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑓∃𝑓𝜏 |
| 22 | 21 | nfn 1857 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓 ¬
∃𝑓𝜏 |
| 23 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓𝐴 |
| 24 | 22, 23 | nfrabw 3475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓{𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| 25 | 20, 24 | nfcxfr 2903 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑓𝐷 |
| 26 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑓∅ |
| 27 | 25, 26 | nfne 3043 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑓 𝐷 ≠ ∅ |
| 28 | 19, 27 | nfan 1899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑓(𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅) |
| 29 | 18, 28 | nfxfr 1853 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑓𝜓 |
| 30 | 25 | nfcri 2897 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑓 𝑥 ∈ 𝐷 |
| 31 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑓 ¬ 𝑦𝑅𝑥 |
| 32 | 25, 31 | nfralw 3311 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑓∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥 |
| 33 | 29, 30, 32 | nf3an 1901 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑓(𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
| 34 | 6, 33 | nfxfr 1853 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑓𝜒 |
| 35 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑓 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
| 36 | 34, 35 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑓(𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 37 | 1, 36 | nfxfr 1853 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓𝜃 |
| 38 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) |
| 39 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
| 40 | 37, 38, 39 | nf3an 1901 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓(𝜃 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 41 | 5, 40 | nfxfr 1853 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓𝜂 |
| 42 | 41 | nf5ri 2195 |
. . . . . . . . . . 11
⊢ (𝜂 → ∀𝑓𝜂) |
| 43 | 1 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝜃 → 𝜒) |
| 44 | 5, 43 | bnj835 34773 |
. . . . . . . . . . . 12
⊢ (𝜂 → 𝜒) |
| 45 | 5 | simp2bi 1147 |
. . . . . . . . . . . 12
⊢ (𝜂 → 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) |
| 46 | | bnj1398.1 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| 47 | | bnj1398.2 |
. . . . . . . . . . . . . 14
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 48 | | bnj1398.3 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 49 | | bnj1398.4 |
. . . . . . . . . . . . . 14
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| 50 | | bnj1398.8 |
. . . . . . . . . . . . . 14
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| 51 | 46, 47, 48, 49, 20, 18, 6, 50 | bnj1388 35047 |
. . . . . . . . . . . . 13
⊢ (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′) |
| 52 | | rsp 3247 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′ → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′)) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′)) |
| 54 | 44, 45, 53 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝜂 → ∃𝑓𝜏′) |
| 55 | 42, 54 | bnj596 34760 |
. . . . . . . . . 10
⊢ (𝜂 → ∃𝑓(𝜂 ∧ 𝜏′)) |
| 56 | 46, 47, 48, 49, 50 | bnj1373 35044 |
. . . . . . . . . . . . . 14
⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 57 | 56 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝜏′ → 𝑓 ∈ 𝐶) |
| 58 | 57 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → 𝑓 ∈ 𝐶) |
| 59 | 56 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝜏′ → dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 60 | | rspe 3249 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 61 | 45, 59, 60 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 62 | | bnj1398.9 |
. . . . . . . . . . . . . 14
⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| 63 | 62 | eqabri 2885 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝐻 ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
| 64 | 56 | rexbii 3094 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 65 | | r19.42v 3191 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 66 | 63, 64, 65 | 3bitri 297 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ 𝐻 ↔ (𝑓 ∈ 𝐶 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 67 | 58, 61, 66 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜂 ∧ 𝜏′) → 𝑓 ∈ 𝐻) |
| 68 | 5 | simp3bi 1148 |
. . . . . . . . . . . . 13
⊢ (𝜂 → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 70 | 59 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 71 | 69, 70 | eleqtrrd 2844 |
. . . . . . . . . . 11
⊢ ((𝜂 ∧ 𝜏′) → 𝑧 ∈ dom 𝑓) |
| 72 | 67, 71 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜂 ∧ 𝜏′) → (𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
| 73 | 55, 72 | bnj593 34759 |
. . . . . . . . 9
⊢ (𝜂 → ∃𝑓(𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
| 74 | | df-rex 3071 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
𝐻 𝑧 ∈ dom 𝑓 ↔ ∃𝑓(𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
| 75 | 73, 74 | sylibr 234 |
. . . . . . . 8
⊢ (𝜂 → ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
| 76 | | bnj1398.10 |
. . . . . . . . . . . 12
⊢ 𝑃 = ∪
𝐻 |
| 77 | 76 | dmeqi 5915 |
. . . . . . . . . . 11
⊢ dom 𝑃 = dom ∪ 𝐻 |
| 78 | 62 | bnj1317 34835 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
| 79 | 78 | bnj1400 34849 |
. . . . . . . . . . 11
⊢ dom ∪ 𝐻 =
∪ 𝑓 ∈ 𝐻 dom 𝑓 |
| 80 | 77, 79 | eqtri 2765 |
. . . . . . . . . 10
⊢ dom 𝑃 = ∪ 𝑓 ∈ 𝐻 dom 𝑓 |
| 81 | 80 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑧 ∈ dom 𝑃 ↔ 𝑧 ∈ ∪
𝑓 ∈ 𝐻 dom 𝑓) |
| 82 | | eliun 4995 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑓 ∈ 𝐻 dom 𝑓 ↔ ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
| 83 | 81, 82 | bitri 275 |
. . . . . . . 8
⊢ (𝑧 ∈ dom 𝑃 ↔ ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
| 84 | 75, 83 | sylibr 234 |
. . . . . . 7
⊢ (𝜂 → 𝑧 ∈ dom 𝑃) |
| 85 | 17, 84 | bnj593 34759 |
. . . . . 6
⊢ (𝜃 → ∃𝑦 𝑧 ∈ dom 𝑃) |
| 86 | | nfre1 3285 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ |
| 87 | 86 | nfab 2911 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| 88 | 62, 87 | nfcxfr 2903 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐻 |
| 89 | 88 | nfuni 4914 |
. . . . . . . . 9
⊢
Ⅎ𝑦∪ 𝐻 |
| 90 | 76, 89 | nfcxfr 2903 |
. . . . . . . 8
⊢
Ⅎ𝑦𝑃 |
| 91 | 90 | nfdm 5962 |
. . . . . . 7
⊢
Ⅎ𝑦dom
𝑃 |
| 92 | 91 | nfcrii 2900 |
. . . . . 6
⊢ (𝑧 ∈ dom 𝑃 → ∀𝑦 𝑧 ∈ dom 𝑃) |
| 93 | 85, 92 | bnj1397 34848 |
. . . . 5
⊢ (𝜃 → 𝑧 ∈ dom 𝑃) |
| 94 | 1, 93 | sylbir 235 |
. . . 4
⊢ ((𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → 𝑧 ∈ dom 𝑃) |
| 95 | 94 | ex 412 |
. . 3
⊢ (𝜒 → (𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → 𝑧 ∈ dom 𝑃)) |
| 96 | 95 | ssrdv 3989 |
. 2
⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) ⊆ dom 𝑃) |
| 97 | | simpr 484 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓) |
| 98 | 66 | simprbi 496 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 99 | 98 | adantr 480 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 100 | | r19.42v 3191 |
. . . . . . . 8
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)(𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑧 ∈ dom 𝑓 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 101 | | eleq2 2830 |
. . . . . . . . . 10
⊢ (dom
𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → (𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 102 | 101 | biimpac 478 |
. . . . . . . . 9
⊢ ((𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 103 | 102 | reximi 3084 |
. . . . . . . 8
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)(𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 104 | 100, 103 | sylbir 235 |
. . . . . . 7
⊢ ((𝑧 ∈ dom 𝑓 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 105 | 97, 99, 104 | syl2anc 584 |
. . . . . 6
⊢ ((𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 106 | 105 | rexlimiva 3147 |
. . . . 5
⊢
(∃𝑓 ∈
𝐻 𝑧 ∈ dom 𝑓 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 107 | | eliun 4995 |
. . . . 5
⊢ (𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 108 | 106, 83, 107 | 3imtr4i 292 |
. . . 4
⊢ (𝑧 ∈ dom 𝑃 → 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 109 | 108 | ssriv 3987 |
. . 3
⊢ dom 𝑃 ⊆ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
| 110 | 109 | a1i 11 |
. 2
⊢ (𝜒 → dom 𝑃 ⊆ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
| 111 | 96, 110 | eqssd 4001 |
1
⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) |