Step | Hyp | Ref
| Expression |
1 | | bnj1398.11 |
. . . . 5
⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
2 | | df-iun 4926 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = {𝑧 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))} |
3 | 2 | bnj1436 32819 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
4 | 1, 3 | simplbiim 505 |
. . . . . . . 8
⊢ (𝜃 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
5 | | bnj1398.12 |
. . . . . . . 8
⊢ (𝜂 ↔ (𝜃 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
6 | | bnj1398.7 |
. . . . . . . . . . . 12
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
7 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝜓 |
8 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝑥 ∈ 𝐷 |
9 | | nfra1 3144 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥 |
10 | 7, 8, 9 | nf3an 1904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
11 | 6, 10 | nfxfr 1855 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝜒 |
12 | | nfiu1 4958 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
13 | 12 | nfcri 2894 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
14 | 11, 13 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
15 | 1, 14 | nfxfr 1855 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜃 |
16 | 15 | nf5ri 2188 |
. . . . . . . 8
⊢ (𝜃 → ∀𝑦𝜃) |
17 | 4, 5, 16 | bnj1521 32831 |
. . . . . . 7
⊢ (𝜃 → ∃𝑦𝜂) |
18 | | bnj1398.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
19 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑓 𝑅 FrSe 𝐴 |
20 | | bnj1398.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
21 | | nfe1 2147 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑓∃𝑓𝜏 |
22 | 21 | nfn 1860 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓 ¬
∃𝑓𝜏 |
23 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓𝐴 |
24 | 22, 23 | nfrabw 3318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓{𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
25 | 20, 24 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑓𝐷 |
26 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑓∅ |
27 | 25, 26 | nfne 3045 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑓 𝐷 ≠ ∅ |
28 | 19, 27 | nfan 1902 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑓(𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅) |
29 | 18, 28 | nfxfr 1855 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑓𝜓 |
30 | 25 | nfcri 2894 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑓 𝑥 ∈ 𝐷 |
31 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑓 ¬ 𝑦𝑅𝑥 |
32 | 25, 31 | nfralw 3151 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑓∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥 |
33 | 29, 30, 32 | nf3an 1904 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑓(𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
34 | 6, 33 | nfxfr 1855 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑓𝜒 |
35 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑓 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
36 | 34, 35 | nfan 1902 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑓(𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
37 | 1, 36 | nfxfr 1855 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓𝜃 |
38 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) |
39 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
40 | 37, 38, 39 | nf3an 1904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓(𝜃 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
41 | 5, 40 | nfxfr 1855 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓𝜂 |
42 | 41 | nf5ri 2188 |
. . . . . . . . . . 11
⊢ (𝜂 → ∀𝑓𝜂) |
43 | 1 | simplbi 498 |
. . . . . . . . . . . . 13
⊢ (𝜃 → 𝜒) |
44 | 5, 43 | bnj835 32739 |
. . . . . . . . . . . 12
⊢ (𝜂 → 𝜒) |
45 | 5 | simp2bi 1145 |
. . . . . . . . . . . 12
⊢ (𝜂 → 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) |
46 | | bnj1398.1 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
47 | | bnj1398.2 |
. . . . . . . . . . . . . 14
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
48 | | bnj1398.3 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
49 | | bnj1398.4 |
. . . . . . . . . . . . . 14
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
50 | | bnj1398.8 |
. . . . . . . . . . . . . 14
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
51 | 46, 47, 48, 49, 20, 18, 6, 50 | bnj1388 33013 |
. . . . . . . . . . . . 13
⊢ (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′) |
52 | | rsp 3131 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′ → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′)) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′)) |
54 | 44, 45, 53 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝜂 → ∃𝑓𝜏′) |
55 | 42, 54 | bnj596 32726 |
. . . . . . . . . 10
⊢ (𝜂 → ∃𝑓(𝜂 ∧ 𝜏′)) |
56 | 46, 47, 48, 49, 50 | bnj1373 33010 |
. . . . . . . . . . . . . 14
⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
57 | 56 | simplbi 498 |
. . . . . . . . . . . . 13
⊢ (𝜏′ → 𝑓 ∈ 𝐶) |
58 | 57 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → 𝑓 ∈ 𝐶) |
59 | 56 | simprbi 497 |
. . . . . . . . . . . . 13
⊢ (𝜏′ → dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
60 | | rspe 3237 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
61 | 45, 59, 60 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
62 | | bnj1398.9 |
. . . . . . . . . . . . . 14
⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
63 | 62 | abeq2i 2875 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝐻 ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
64 | 56 | rexbii 3181 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
65 | | r19.42v 3279 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
66 | 63, 64, 65 | 3bitri 297 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ 𝐻 ↔ (𝑓 ∈ 𝐶 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
67 | 58, 61, 66 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜂 ∧ 𝜏′) → 𝑓 ∈ 𝐻) |
68 | 5 | simp3bi 1146 |
. . . . . . . . . . . . 13
⊢ (𝜂 → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
69 | 68 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
70 | 59 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ 𝜏′) → dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
71 | 69, 70 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ ((𝜂 ∧ 𝜏′) → 𝑧 ∈ dom 𝑓) |
72 | 67, 71 | jca 512 |
. . . . . . . . . 10
⊢ ((𝜂 ∧ 𝜏′) → (𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
73 | 55, 72 | bnj593 32725 |
. . . . . . . . 9
⊢ (𝜂 → ∃𝑓(𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
74 | | df-rex 3070 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
𝐻 𝑧 ∈ dom 𝑓 ↔ ∃𝑓(𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
75 | 73, 74 | sylibr 233 |
. . . . . . . 8
⊢ (𝜂 → ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
76 | | bnj1398.10 |
. . . . . . . . . . . 12
⊢ 𝑃 = ∪
𝐻 |
77 | 76 | dmeqi 5813 |
. . . . . . . . . . 11
⊢ dom 𝑃 = dom ∪ 𝐻 |
78 | 62 | bnj1317 32801 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
79 | 78 | bnj1400 32815 |
. . . . . . . . . . 11
⊢ dom ∪ 𝐻 =
∪ 𝑓 ∈ 𝐻 dom 𝑓 |
80 | 77, 79 | eqtri 2766 |
. . . . . . . . . 10
⊢ dom 𝑃 = ∪ 𝑓 ∈ 𝐻 dom 𝑓 |
81 | 80 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑧 ∈ dom 𝑃 ↔ 𝑧 ∈ ∪
𝑓 ∈ 𝐻 dom 𝑓) |
82 | | eliun 4928 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑓 ∈ 𝐻 dom 𝑓 ↔ ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
83 | 81, 82 | bitri 274 |
. . . . . . . 8
⊢ (𝑧 ∈ dom 𝑃 ↔ ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
84 | 75, 83 | sylibr 233 |
. . . . . . 7
⊢ (𝜂 → 𝑧 ∈ dom 𝑃) |
85 | 17, 84 | bnj593 32725 |
. . . . . 6
⊢ (𝜃 → ∃𝑦 𝑧 ∈ dom 𝑃) |
86 | | nfre1 3239 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ |
87 | 86 | nfab 2913 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
88 | 62, 87 | nfcxfr 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐻 |
89 | 88 | nfuni 4846 |
. . . . . . . . 9
⊢
Ⅎ𝑦∪ 𝐻 |
90 | 76, 89 | nfcxfr 2905 |
. . . . . . . 8
⊢
Ⅎ𝑦𝑃 |
91 | 90 | nfdm 5860 |
. . . . . . 7
⊢
Ⅎ𝑦dom
𝑃 |
92 | 91 | nfcrii 2899 |
. . . . . 6
⊢ (𝑧 ∈ dom 𝑃 → ∀𝑦 𝑧 ∈ dom 𝑃) |
93 | 85, 92 | bnj1397 32814 |
. . . . 5
⊢ (𝜃 → 𝑧 ∈ dom 𝑃) |
94 | 1, 93 | sylbir 234 |
. . . 4
⊢ ((𝜒 ∧ 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → 𝑧 ∈ dom 𝑃) |
95 | 94 | ex 413 |
. . 3
⊢ (𝜒 → (𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → 𝑧 ∈ dom 𝑃)) |
96 | 95 | ssrdv 3927 |
. 2
⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) ⊆ dom 𝑃) |
97 | | simpr 485 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓) |
98 | 66 | simprbi 497 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
99 | 98 | adantr 481 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
100 | | r19.42v 3279 |
. . . . . . . 8
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)(𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑧 ∈ dom 𝑓 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
101 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (dom
𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) → (𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
102 | 101 | biimpac 479 |
. . . . . . . . 9
⊢ ((𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
103 | 102 | reximi 3178 |
. . . . . . . 8
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)(𝑧 ∈ dom 𝑓 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
104 | 100, 103 | sylbir 234 |
. . . . . . 7
⊢ ((𝑧 ∈ dom 𝑓 ∧ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
105 | 97, 99, 104 | syl2anc 584 |
. . . . . 6
⊢ ((𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
106 | 105 | rexlimiva 3210 |
. . . . 5
⊢
(∃𝑓 ∈
𝐻 𝑧 ∈ dom 𝑓 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
107 | | eliun 4928 |
. . . . 5
⊢ (𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
108 | 106, 83, 107 | 3imtr4i 292 |
. . . 4
⊢ (𝑧 ∈ dom 𝑃 → 𝑧 ∈ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
109 | 108 | ssriv 3925 |
. . 3
⊢ dom 𝑃 ⊆ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) |
110 | 109 | a1i 11 |
. 2
⊢ (𝜒 → dom 𝑃 ⊆ ∪
𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
111 | 96, 110 | eqssd 3938 |
1
⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) |