![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
bnj835.2 | ⊢ (𝜑 → 𝜏) |
Ref | Expression |
---|---|
bnj835 | ⊢ (𝜂 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜂 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: bnj1219 33806 bnj1379 33836 bnj1175 34010 bnj1286 34025 bnj1280 34026 bnj1296 34027 bnj1398 34040 bnj1415 34044 bnj1417 34047 bnj1421 34048 bnj1442 34055 bnj1450 34056 bnj1452 34058 bnj1489 34062 bnj1312 34064 bnj1501 34073 bnj1523 34077 |
Copyright terms: Public domain | W3C validator |