Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj835 Structured version   Visualization version   GIF version

Theorem bnj835 34790
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj835.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj835.2 (𝜑𝜏)
Assertion
Ref Expression
bnj835 (𝜂𝜏)

Proof of Theorem bnj835
StepHypRef Expression
1 bnj835.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj835.2 . . 3 (𝜑𝜏)
323ad2ant1 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 217 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  bnj1219  34831  bnj1379  34861  bnj1175  35035  bnj1286  35050  bnj1280  35051  bnj1296  35052  bnj1398  35065  bnj1415  35069  bnj1417  35072  bnj1421  35073  bnj1442  35080  bnj1450  35081  bnj1452  35083  bnj1489  35087  bnj1312  35089  bnj1501  35098  bnj1523  35102
  Copyright terms: Public domain W3C validator