| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| bnj835.2 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj835 | ⊢ (𝜂 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜂 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: bnj1219 34797 bnj1379 34827 bnj1175 35001 bnj1286 35016 bnj1280 35017 bnj1296 35018 bnj1398 35031 bnj1415 35035 bnj1417 35038 bnj1421 35039 bnj1442 35046 bnj1450 35047 bnj1452 35049 bnj1489 35053 bnj1312 35055 bnj1501 35064 bnj1523 35068 |
| Copyright terms: Public domain | W3C validator |