Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj835 Structured version   Visualization version   GIF version

Theorem bnj835 33765
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj835.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj835.2 (𝜑𝜏)
Assertion
Ref Expression
bnj835 (𝜂𝜏)

Proof of Theorem bnj835
StepHypRef Expression
1 bnj835.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj835.2 . . 3 (𝜑𝜏)
323ad2ant1 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 216 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  bnj1219  33806  bnj1379  33836  bnj1175  34010  bnj1286  34025  bnj1280  34026  bnj1296  34027  bnj1398  34040  bnj1415  34044  bnj1417  34047  bnj1421  34048  bnj1442  34055  bnj1450  34056  bnj1452  34058  bnj1489  34062  bnj1312  34064  bnj1501  34073  bnj1523  34077
  Copyright terms: Public domain W3C validator