| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| bnj835.2 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj835 | ⊢ (𝜂 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜂 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: bnj1219 34783 bnj1379 34813 bnj1175 34987 bnj1286 35002 bnj1280 35003 bnj1296 35004 bnj1398 35017 bnj1415 35021 bnj1417 35024 bnj1421 35025 bnj1442 35032 bnj1450 35033 bnj1452 35035 bnj1489 35039 bnj1312 35041 bnj1501 35050 bnj1523 35054 |
| Copyright terms: Public domain | W3C validator |