Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
bnj835.2 | ⊢ (𝜑 → 𝜏) |
Ref | Expression |
---|---|
bnj835 | ⊢ (𝜂 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜂 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: bnj1219 32825 bnj1379 32855 bnj1175 33029 bnj1286 33044 bnj1280 33045 bnj1296 33046 bnj1398 33059 bnj1415 33063 bnj1417 33066 bnj1421 33067 bnj1442 33074 bnj1450 33075 bnj1452 33077 bnj1489 33081 bnj1312 33083 bnj1501 33092 bnj1523 33096 |
Copyright terms: Public domain | W3C validator |