Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj835 Structured version   Visualization version   GIF version

Theorem bnj835 34756
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj835.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj835.2 (𝜑𝜏)
Assertion
Ref Expression
bnj835 (𝜂𝜏)

Proof of Theorem bnj835
StepHypRef Expression
1 bnj835.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj835.2 . . 3 (𝜑𝜏)
323ad2ant1 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 217 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  bnj1219  34797  bnj1379  34827  bnj1175  35001  bnj1286  35016  bnj1280  35017  bnj1296  35018  bnj1398  35031  bnj1415  35035  bnj1417  35038  bnj1421  35039  bnj1442  35046  bnj1450  35047  bnj1452  35049  bnj1489  35053  bnj1312  35055  bnj1501  35064  bnj1523  35068
  Copyright terms: Public domain W3C validator