| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| bnj835.2 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj835 | ⊢ (𝜂 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜂 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: bnj1219 34812 bnj1379 34842 bnj1175 35016 bnj1286 35031 bnj1280 35032 bnj1296 35033 bnj1398 35046 bnj1415 35050 bnj1417 35053 bnj1421 35054 bnj1442 35061 bnj1450 35062 bnj1452 35064 bnj1489 35068 bnj1312 35070 bnj1501 35079 bnj1523 35083 |
| Copyright terms: Public domain | W3C validator |