Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj835 Structured version   Visualization version   GIF version

Theorem bnj835 31157
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj835.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj835.2 (𝜑𝜏)
Assertion
Ref Expression
bnj835 (𝜂𝜏)

Proof of Theorem bnj835
StepHypRef Expression
1 bnj835.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj835.2 . . 3 (𝜑𝜏)
323ad2ant1 1156 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 208 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  w3a 1100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-an 385  df-3an 1102
This theorem is referenced by:  bnj1219  31199  bnj1379  31229  bnj1175  31400  bnj1286  31415  bnj1280  31416  bnj1296  31417  bnj1398  31430  bnj1415  31434  bnj1417  31437  bnj1421  31438  bnj1442  31445  bnj1450  31446  bnj1452  31448  bnj1489  31452  bnj1312  31454  bnj1501  31463  bnj1523  31467
  Copyright terms: Public domain W3C validator