Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj835 Structured version   Visualization version   GIF version

Theorem bnj835 32784
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj835.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj835.2 (𝜑𝜏)
Assertion
Ref Expression
bnj835 (𝜂𝜏)

Proof of Theorem bnj835
StepHypRef Expression
1 bnj835.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj835.2 . . 3 (𝜑𝜏)
323ad2ant1 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 216 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089
This theorem is referenced by:  bnj1219  32825  bnj1379  32855  bnj1175  33029  bnj1286  33044  bnj1280  33045  bnj1296  33046  bnj1398  33059  bnj1415  33063  bnj1417  33066  bnj1421  33067  bnj1442  33074  bnj1450  33075  bnj1452  33077  bnj1489  33081  bnj1312  33083  bnj1501  33092  bnj1523  33096
  Copyright terms: Public domain W3C validator