| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| bnj835.2 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj835 | ⊢ (𝜂 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜂 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: bnj1219 34831 bnj1379 34861 bnj1175 35035 bnj1286 35050 bnj1280 35051 bnj1296 35052 bnj1398 35065 bnj1415 35069 bnj1417 35072 bnj1421 35073 bnj1442 35080 bnj1450 35081 bnj1452 35083 bnj1489 35087 bnj1312 35089 bnj1501 35098 bnj1523 35102 |
| Copyright terms: Public domain | W3C validator |