![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj835 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj835.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
bnj835.2 | ⊢ (𝜑 → 𝜏) |
Ref | Expression |
---|---|
bnj835 | ⊢ (𝜂 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj835.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | bnj835.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜂 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: bnj1219 34776 bnj1379 34806 bnj1175 34980 bnj1286 34995 bnj1280 34996 bnj1296 34997 bnj1398 35010 bnj1415 35014 bnj1417 35017 bnj1421 35018 bnj1442 35025 bnj1450 35026 bnj1452 35028 bnj1489 35032 bnj1312 35034 bnj1501 35043 bnj1523 35047 |
Copyright terms: Public domain | W3C validator |