Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj835 Structured version   Visualization version   GIF version

Theorem bnj835 34735
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj835.1 (𝜂 ↔ (𝜑𝜓𝜒))
bnj835.2 (𝜑𝜏)
Assertion
Ref Expression
bnj835 (𝜂𝜏)

Proof of Theorem bnj835
StepHypRef Expression
1 bnj835.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒))
2 bnj835.2 . . 3 (𝜑𝜏)
323ad2ant1 1133 . 2 ((𝜑𝜓𝜒) → 𝜏)
41, 3sylbi 217 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  bnj1219  34776  bnj1379  34806  bnj1175  34980  bnj1286  34995  bnj1280  34996  bnj1296  34997  bnj1398  35010  bnj1415  35014  bnj1417  35017  bnj1421  35018  bnj1442  35025  bnj1450  35026  bnj1452  35028  bnj1489  35032  bnj1312  35034  bnj1501  35043  bnj1523  35047
  Copyright terms: Public domain W3C validator